
Demo: FLaaS - Practical Federated Learning as a Service for
Mobile Applications

Kleomenis Katevas, Diego Perino, Nicolas Kourtellis
Telefonica Research, Barcelona, Spain

Heroku
Dynos
Heroku
Dynos
Device 

Workers

R
ES

T 
A

PI

Lo
ad

 B
al

an
ce

r

Model 
Aggregator

Device 
Scheduler

Device 
Scheduler

Device 
Scheduler !

Notification 
Service Provider

Apple Push 
Notification

Firebase Cloud 
Messaging

Database

FLaaS
Local

App 1

App 2

App 3
HTTPS

Notification

FLaaS ServerAdmin Interface Client Device

Front-endFront-endFront-end

Web Interface

Load Balancer

App Developer

!

C
om

m
un

ic
at

io
n 

A
PI

"""

3

4

5

6a

6b

7

8a

8b

8c1

9a

9b

2

1 2 3 4 5 6 7 8 9 10
FL Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

Joint Samples

Replied users (IID)
Joined users (IID)
Available users (IID)
Optimal (IID)

Replied users (NonIID)
Joined users (NonIID)
Available users (NonIID)
Optimal (NonIID)

Figure 1: (Left) FLaaS architecture. A set of devices participate in FLaaS and periodically report their status (1) through the back-end’s
REST API, (2) to the DB for logging. App developers use the Admin Interface to (3) create a new FLaaS FL project, whose configuration is (4)
stored in the DB. The Device Scheduler (5) detects the new FLaaS project and queries for device statuses from the DB, and (6a) sends an FL
training request using its Notification Service provider to (6b) external services (e.g., APN or FCM). Each device’s FLaaS Local (7) receives the
training request and (8a, 8b, 8c) requests from collaborating third-party apps to send either their local samples for training, or to train their
own models. It then performs the required on-device ML training (if it received samples) or model aggregation and averaging depending on ML
training mode. When sufficient number of reported models is received by the Server (1), the Device Scheduler (9a, 9b) instructs the Model
Aggregator to accumulate the received models, marks the FL round as complete, and continues with the next FL round until the project is
complete (i.e., stopping criteria are reached). (Right) Test accuracy achieved per FL round for different experiments on 100+ devices.

ACM Reference Format:
Kleomenis Katevas, Diego Perino, Nicolas Kourtellis. 2022. Demo: FLaaS - Prac-
tical Federated Learning as a Service for Mobile Applications. In The 23rd Inter-
national Workshop on Mobile Computing Systems and Applications (HotMobile

’22), March 9–10, 2022, Tempe, AZ, USA. ACM, New York, NY, USA, 1 page.
https://doi.org/10.1145/3508396.3517074
1 FLAAS MOTIVATION
Federated Learning (FL) has emerged as a popular solution to distribut-
edly train a model on user devices, improving privacy and system scalabil-
ity. However, there are no practical systems to easily enable FL training
on mobile apps, and especially in an “as-a-service” fashion. Thus, we im-
plement and test FLaaS, our previously proposed end-to-end service [1]:
a) Easy to use by incorporating it in existing apps, and providing a
simple user interface to configure the FL process.
b) Performs on-device training by building on TensorFlow Lite to
support different FLaaS ML model training modes: i) individual model
per app, ii) joint model across collaborating apps.
c) Enables secure & private FL training using i) secure communication
channels and authentication between apps and FLaaS service, ii) secure
on-device data storages.
d) Is production ready: as it was tested in the wild on 140 real devices
to deal with challenges such as scalability and robustness using load
balancers, cloud-based notification service, etc.
2 FLAAS DESIGN & IMPLEMENTATION
Fig. 1(left) outlines the FLaaS architecture and steps required to perform
an FL training process within FLaaS. The back-end incorporates the
roles of Admin Interface, Server and Notification Service. It is hosted in

HotMobile ’22, March 9–10, 2022, Tempe, AZ, USA
© 2022 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in The 23rd International
Workshop on Mobile Computing Systems and Applications (HotMobile ’22), March 9–10,
2022, Tempe, AZ, USA, https://doi.org/10.1145/3508396.3517074.

the Heroku Cloud platform (heroku.com) and uses Standard-1X Dynos
(512MB RAM), Linux-based shared containers to enable easy deploy-
ment, scaling, load balancing and scheduling of FLaaS modules.
a) Admin Interface: Front-end interface for app developers used to
bootstrap, configure, execute and monitor FL projects.
b) Server: Scalable, cloud-hosted service in charge of orchestrating /
monitoring FL processes on behalf of app developers.
c) Notification Services: Mobile push notification services used for push
comms to client devices for new FL projects and rounds execution (e.g.,
Apple Push Notification (APNs) and Firebase Cloud Messaging (FCM)),
provided by pushwoosh.com service.
d) Client Devices: FLaaS currently supports Android-based devices,
Android 8.0+, since iOS does not provide (yet) in-app comms features
necessary for joint, cross-app training. Third-party apps can integrate the
FLaaS-library with ∼10 lines of code.

3 FLAAS DEMONSTRATION
This live demo includes the following steps:
Step 1: Creation of new FLaaS projects with all required configurations,
using online front-end app developer interface.
Step 2: Deployment of project on several real mobile devices with 3
FLaaS-enabled mobile apps, to train FL models collaboratively.
Step 3: Monitoring of project’s health and global FL model performance
as in Fig. 1(right) on different experimental scenarios.

Acknowledgment:
This project received funding from EC under grant agreements No 830927
(Concordia), No 871370 (Pimcity) and No 871793 (Accordion).

References:
[1] Kourtellis, N., Katevas, K., and Perino, D. Flaas: Federated learning
as a service. In ACM DistributedML (2020).

130

https://doi.org/10.1145/3508396.3517074
https://doi.org/10.1145/3508396.3517074

	1 FLaaS Motivation
	2 FLaaS Design & Implementation
	3 FLaaS Demonstration

