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Figure 1: FLaaS architecture. A set of devices participate in FLaaS and periodically report their status (1) through the back-end’s REST API,
(2) to the DB for logging. App developers use the Admin Interface to (3) create new FLaaS projects, whose configuration is (4) stored in the DB.
The Device Scheduler: (5) detects new FLaaS projects and queries for device statuses from the DB; (6a) sends an FL training request using
its Notification Service provider to (6b) external services (e.g., APN or FCM). Each device’s FLaaS Local (7) receives the training request and
(8a, 8b, 8c) requests from collaborating 3rd-party apps to send either their local samples for training, or to train their own models. It then
performs the required on-device ML training (if it received samples) or model aggregation/averaging, depending on ML training mode. When
enough models are received by the Server (1), the Device Scheduler (9a, 9b) instructs the Model Aggregator to accumulate the received models,
marks the FL round as complete, and continues with the next FL round until the project is complete (i.e., reaching stopping criteria).
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1 MOTIVATION
Federated Learning (FL) [2] has emerged as a popular solution of Con-
fidential Computing [3] to distributedly train a model on user devices,
improving privacy and system scalability. Such privacy-preserving mod-
els can be used in wide range of applications, and especially in Telco
networks [4]. However, there are no practical systems to easily enable FL
training on mobile apps, and especially in an as-a-service fashion. In this
demo, we implement and test FLaaS, our recently proposed end-to-end
FL service [1]. FLaaS includes a client-side framework with app library
and service, and a back-end server, to enable secure and easy to deploy
intra- and inter-app FL model training on mobile environments.
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1.1 Design Principles
In particular, FLaaS system has been design to be:
a) Easy to use by incorporating it in existing apps, and providing a simple
user interface to configure the FL process.
b) On-device training capable by building on TensorFlow Lite to sup-
port different FLaaS ML model training modes: i) individual model per
app, ii) joint model across collaborating apps.
c) Secure & private while training FL models, using i) secure communi-
cation channels and authentication between apps and FLaaS service, ii)
secure on-device data storage.
d) Production ready: as it was tested in the wild on 140 real devices
to deal with challenges such as scalability and robustness using load
balancers, cloud-based notification service, etc.

2 FLAAS DESIGN & IMPLEMENTATION
Fig. 1 outlines the FLaaS architecture and steps required to perform
an FL training process within FLaaS. The back-end incorporates the
roles of Admin Interface, Server and Notification Service. It is hosted in
the Heroku Cloud platform (heroku.com) and uses Standard-1X Dynos
(512MB RAM), Linux-based shared containers to enable easy deploy-
ment, scaling, load balancing and scheduling of FLaaS modules.
a) Admin Interface: Front-end interface for app developers used to
bootstrap, configure, execute and monitor FL projects. Some examples
are shown in Fig. 2 for new FLaaS project creation and management of
details for a Client Device.
b) Server: Scalable, cloud-hosted service in charge of orchestrating /
monitoring FL processes on behalf of app developers. It consists of
the following modules: 1) Database (a PostgreSQL v13.4 instance used
for the Relational DB, and an Amazon S3 Data Store used as an Object
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Figure 2: User interface for (left) creation of new FLaaS project with
various settings, and (right) new device details.
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Figure 3: Inter and intra-app modules on Client Devices.

Storage DB), 2) Device Schedulers (one-off Worker (Heroku Dyno) that is
only instantiated periodically everyT minutes, and handled by the Heroku
Scheduler service, by starting a new Dyno, one per FL project), 3) Model
Aggregator (Worker started by Scheduler when FL project’s termination
conditions are met), 4) Device Workers (each uses Django v3.2 under
Python v3.8.12 and has a dedicated REST API based on Django REST
framework v3.12.4), 5) Load Balancer (provided by Heroku service).
Communication between Device Workers and Client Devices is encrypted
using TLS v1.3 over HTTPS.
c) Notification Services: Mobile push notification services used for push
comms to client devices through silent push notifications for new FL
projects and rounds execution (e.g., Apple Push Notification (APNs) and
Firebase Cloud Messaging (FCM)), provided by pushwoosh.com service.
d) Client Devices: In charge of computing the ML training tasks of a
FLaaS FL project orchestrated by the Server. On such devices, there are
two main modules: FLaaS Local and FLaaS Library. These modules
facilitate the FLaaS on-device functions summarized in Fig. 3: App
authentication, inter-app communication, access policy management, ML
model training, data storing, and status reporting. FLaaS currently sup-
ports Android-based devices, Android 8.0+, since iOS does not provide
(yet) in-app comm features necessary for joint, cross-app training. Third-
party apps can integrate the FLaaS-Library with ∼10 lines of code.
On-device ML training modes: FLaaS currently supports: (1) Individ-
ual model, where each app builds its own model on its samples, (2) Joint
Samples (JS) model, where 2 or more collaborating apps share samples
with FLaaS Local that builds a unified model, and (3) Joint Models (JM),
where the collaborating apps train their own models on their data, and
then share these models with FLaaS Local for averaging and reporting.

3 FLAAS EXPERIMENTATION
We performed a user study with 140+ real user devices and measured
the overall time duration for an FL round in each of the two ML model
training modes: Joint Samples vs. Joint Models, as well as time needed
for different on-device functions. Preliminary results shown in Fig. 4
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Figure 4: (left) Total duration of FL round, across projects using JS
or JM mode. (right) Average time taken to perform different func-
tions related to participation in an FL project using JM mode.
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Figure 5: Test accuracy achieved per FL round, for Joint Models,
using IID or NonIID data.

demonstrate that the majority of Client devices can return a useful model
quite fast: the 80th percentile duration of an FL round is 6.15 minutes
for Joint Samples and 4.65 minutes for Joint Models. Currently, the most
costly function in the on-device FL process is the loading of samples
for training. Also, in Fig. 5 we show the ML utility (test accuracy) of
the model built with Joint Models on real availability of users, again
demonstrating comparative performance vs. ideal conditions when all
registered users are considered available.

4 FLAAS DEMONSTRATION
This live demo includes the following steps:
Step 1: Creation of new FLaaS projects with all required configurations,
using online front-end app developer interface.
Step 2: Deployment of project on several real mobile devices with differ-
ent FLaaS-enabled mobile apps, to train FL models collaboratively.
Step 3: Monitoring of project’s health and global FL model performance
as in Fig. 5 on different experimental scenarios.

5 CODE RELEASE
FLaaS is open-sourced under MIT License to increase FL adoption,
repeatability and further research on practical FL systems:

https://github.com/FLaaSResearch
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