
PPFL: Privacy-preserving Federated Learning with Trusted
Execution Environments

Fan Mo
∗

Imperial College London

Hamed Haddadi

Imperial College London

Kleomenis Katevas

Telefónica Research

Eduard Marin

Telefónica Research

Diego Perino

Telefónica Research

Nicolas Kourtellis

Telefónica Research

ABSTRACT
We propose and implement a Privacy-preserving Federated Learn-

ing (𝑃𝑃𝐹𝐿) framework for mobile systems to limit privacy leak-

ages in federated learning. Leveraging the widespread presence of

Trusted Execution Environments (TEEs) in high-end and mobile

devices, we utilize TEEs on clients for local training, and on servers

for secure aggregation, so that model/gradient updates are hidden

from adversaries. Challenged by the limited memory size of current

TEEs, we leverage greedy layer-wise training to train each model’s

layer inside the trusted area until its convergence. The performance

evaluation of our implementation shows that 𝑃𝑃𝐹𝐿 can signifi-

cantly improve privacy while incurring small system overheads

at the client-side. In particular, 𝑃𝑃𝐹𝐿 can successfully defend the

trained model against data reconstruction, property inference, and

membership inference attacks. Furthermore, it can achieve com-
parable model utility with fewer communication rounds (0.54×)
and a similar amount of network traffic (1.002×) compared to the

standard federated learning of a complete model. This is achieved

while only introducing up to ∼15% CPU time, ∼18% memory usage,

and ∼21% energy consumption overhead in 𝑃𝑃𝐹𝐿’s client-side.

CCS CONCEPTS
• Security and privacy→ Privacy protections; Distributed sys-
tems security; • Computing methodologies→ Distributed algo-
rithms.

ACM Reference Format:
Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino,

and Nicolas Kourtellis. 2021. PPFL: Privacy-preserving Federated Learning

with Trusted Execution Environments. In The 19th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys ’21), June
24-July 2, 2021, Virtual, WI, USA. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3458864.3466628

∗
Work performed while at Telefónica Research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8443-8/21/07. . . $15.00

https://doi.org/10.1145/3458864.3466628

1 INTRODUCTION
Training deep neural networks (DNNs) on multiple devices locally

and building an aggregated global model on a server, namely feder-

ated learning (FL), has drawn significant attention from academia

(e.g., [17, 27, 42]) and industry, and is even being deployed in real

systems (e.g., Google Keyboard [7]). Unlike traditional machine

learning (ML), where a server collects all user data at a central

point and trains a global model, in FL, users only send the locally

updated model parameters to the server. This allows training a

model without the need for users to reveal their data, thus preserv-

ing their privacy. Unfortunately, recent works have shown that

adversaries can execute attacks to retrieve sensitive information

from the model parameters themselves [16, 20, 45, 78]. Prominent

examples of such attacks are data reconstruction [16, 20] and var-

ious types of inference attacks [20, 45]. The fundamental reason

why these attacks are possible is because as a DNN learns to achieve

their main task, it also learns irrelevant information from users’

training data that is inadvertently embedded in the model [73].

Note that in FL scenarios, such attacks can be launched both at

server and client sides.

Motivated by these attacks, researchers have recently introduced

several countermeasures to prevent them. Existing solutions can

be grouped into three main categories depending on whether they

rely on: (i) homomorphic encryption (e.g., [2, 42]), (ii) multi-party

computation (e.g., [8]), or (iii) differential privacy (e.g., [14, 17, 44]).

While homomorphic encryption is practical in both high-end and

mobile devices, it only supports a limited number of arithmetic

operations in the encrypted domain. Alternatively, the use of fully

homomorphic encryption has been employed to allow arbitrary op-

erations in the encrypted domain, thus supports ML. Yet, this comes

with too much computational overhead, making it impractical for

mobile devices [51, 63]. Similarly, multi-party computation-based

solutions incur significant computational overhead. Also, in some

cases, differential privacy can fail to provide sufficient privacy as

shown in [45]. Furthermore, it can negatively impact the utility

and fairness of the model [3, 25], as well as the system perfor-

mance [66, 68]. Overall, none of the existing solutions meets all

requirements, hampering their adoption.

More recently, the use of hardware-based Trusted Execution

Environments (TEEs) has been proposed as a promising way to

preclude attacks against DNN model parameters and gradients.

TEEs allow to securely store data and execute arbitrary code on an

untrusted device almost at native speed through secure memory

compartments. All these advantages – together with the recent

commoditization of TEEs both in high-end and mobile devices –

make TEEs a suitable candidate to allow fully privacy-preserving

ar
X

iv
:2

10
4.

14
38

0v
2

 [
cs

.C
R

]
 2

8
Ju

n
20

21

https://doi.org/10.1145/3458864.3466628
https://doi.org/10.1145/3458864.3466628

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and Nicolas Kourtellis

ML modeling. However, in order to keep the Trusted Computing

Base (TCB) as small as possible, current TEEs have limited memory.

This makes it impossible to simultaneously place all DNN layers

inside the TEE. As a result, prior work has opted for using TEEs

to conceal only the most sensitive DNN layers from adversaries,

leaving other layers unprotected [18, 49]. While this approach was

sufficient to mitigate some attacks against traditional ML where

clients obtain only the final model, in FL scenarios the attack surface

is significantly larger. FL client devices are able to observe distinct

snapshots of the model throughout the training, allowing them to

realize attacks at different stages [20, 45]. Therefore, it is of utmost

importance to protect all DNN layers using the TEE.

In this paper, we propose Privacy-preserving Federated Learn-

ing (PPFL), the first practical framework to fully prevent private

information leakage at both server and client-side under FL scenar-

ios. PPFL is based on greedy layer-wise training and aggregation,

overcoming the constraints posed by the limited TEE memory, and

providing comparable accuracy of complete model training at the

price of a tolerable delay. Our layer-wise approach supports sophis-

ticated settings such as training one or more layers (block) each

time, which can potentially better deal with heterogeneous data at

the client-side and speed up the training process.

To show its feasibility, we implemented and evaluated a full

prototype of PPFL system including server-side (with Intel SGX),

client-side (with Arm TrustZone) elements of the design, and the

secure communication between them. Our experimental evaluation

shows that PPFL provides full protection against data reconstruc-

tion, property inference, and membership inference attacks, whose

outcomes are degraded to random guessing (e.g., white noise im-

ages or 50% precision scores). PPFL is practical as it does not add

significant overhead to the training process. Compared to regular

end-to-end FL, PPFL introduces a 3× or higher delay for completing

the training of all DNN layers. However, PPFL achieves comparable

ML performance when training only the first few layers, meaning

that it is not needed to train all DNN layers. Due to this flexibility

of layer-wise training, PPFL can provide a similar ML model util-

ity as end-to-end FL, with fewer communication rounds (0.54×),
and a similar amount of network traffic (1.002×), with only ∼15%
CPU time, ∼18% memory usage, and ∼21% energy consumption

overhead at client-side.

2 BACKGROUND AND RELATEDWORK
In this section, we provide the background needed to understand

the way TEEs work (Sec. 2.1), existing privacy risks in FL (Sec. 2.2),

privacy-preserving ML techniques using TEEs (Sec. 2.3), as well as

core ideas behind layer-wise DNN training for FL (Sec. 2.4).

2.1 Trusted Execution Environments (TEE)
A TEE enables the creation of a secure area on the main processor

that provides strong confidentiality and integrity guarantees to any

data and code it stores or processes. TEEs realize strong isolation

and attestation of secure compartments by enforcing a dual-world

view where even compromised or malicious system (i.e., privileged)

software in the normal world – also known as the Rich Operating

System Execution Environment (REE) – cannot gain access to the

secure world. This allows for a drastic reduction of the TCB since

only the code running in the secure world needs to be trusted.

Another key aspect of TEEs is that they allow arbitrary code to run

inside almost at native speed. In order to keep the TCB as small as

possible, current TEEs have limited memory; beyond this, TEEs are

required to swap pages between secure and unprotected memory,

which incurs a significant overhead and hence must be prevented.

Over the last few years, significant research and industry efforts

have been devoted to developing secure and programmable TEEs

for high-end devices (e.g., servers
1
) and mobile devices (e.g., smart-

phones). In our work, we leverage Intel Software Guard Extensions

(Intel SGX) [13] at the server-side, while in the client devices we rely

on Open Portable Trusted Execution Environment (OP-TEE) [40].

OP-TEE is a widely known open-source TEE framework that is sup-

ported by different boards equipped with Arm TrustZone. While

some TEEs allow the creation of fixed-sized secure memory regions

(e.g., of 128MB in Intel SGX), some others (e.g., ARM TrustZone) do

not place any limit on the TEE size. However, creating large TEEs

is considered to be bad practice since it has proven to significantly

increase the attack surface. Therefore, the TEE size must always

be kept as small as possible independently of the type of TEEs and

devices being used. This principle has already been adopted by

industry, e.g., in the HiKey 960 board the TEE size is only 16MiB.

2.2 Privacy Risks in FL
Below we give a brief overview of the three main categories of

privacy-related attacks in FL: data reconstruction, property infer-

ence, and membership inference attacks.

Data Reconstruction Attack (DRA). The DRA aims at recon-

structing original input data based on the observed model or its gra-

dients. It works by inverting model gradients based on generative

adversarial attack-similar techniques [2, 16, 78], and consequently

reconstructing the corresponding original data used to produce the

gradients. DRAs are effective when attacking DNN’s early layers,

and when gradients have been only updated on a small batch of

data (i.e., less than 8) [16, 49, 78]. As the server typically observes

updated models of each client in plaintext, it is more likely for this

type of leakages to exist at the server. By subtracting updated mod-

els with the global model, the server obtains gradients computed

w.r.t. clients’ data during the local training.

Property Inference Attack (PIA). The goal of PIAs is to infer

the value of private properties in the input data. This attack is

achieved by building a binary classifier trained on model gradients

updated with auxiliary data and can be conducted on both server

and client sides [45]. Specifically, property information, which also

refers to the feature/latent information of the input data, is easier

to be carried in stronger aggregation [47]. Even though clients in

FL only observe multiple snapshots of broadcast global models that

have been linearly aggregated on participating clients’ updates,

property information can still be well preserved, providing attack

points to client-side adversaries.

Membership Inference Attack (MIA). The purpose of MIAs is

to learn whether specific data instances are present in the train-

ing dataset. One can follow a similar attack mechanism as PIAs

1
Recently, cloud providers also offer TEE-enabled infrastructure-as-a-service solu-

tions to their customers (e.g., Microsoft Azure Confidential).

PPFL: Privacy-preserving Federated Learning with Trusted Execution Environments MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

to build a binary classifier when conducting MIAs [52], although

there are other methods, e.g., using shadow models [64]. The risk

of MIAs can exist on both the server and client sides. Moreover,

because membership is ‘high-level’ latent information, adversaries

can perform MIAs on the final (well-trained) model and its last

layer [52, 64, 73].

2.3 Privacy-preserving ML using TEEs
Running ML inside TEEs can hide model parameters from REE

adversaries and consequently preserve privacy, as already used

for light data analytics on servers [54, 62] and for heavy computa-

tions such as DNN training [18, 23, 49, 70]. However, due to TEEs’

limited memory size, previous studies run only part of the model

(e.g., sensitive layers) inside the TEE [18, 48, 49, 70]. In the on-device

training case, DarkneTZ [49] runs the last layers with a Trusted

Application inside TEEs to defend against MIAs, and leaves the first

layers unprotected. DarkneTZ’s evaluation showed no more than

10% overhead in CPU, memory, and energy on edge-like devices,

demonstrating its suitability for client-side model updates in FL. In

an orthogonal direction, several works leveraged clients’ TEEs for

verifying the integrity of local model training [10, 75], but did not

consider privacy. Considering a broader range of attacks (e.g., DRAs

and PIAs), it is essential to protect all layers instead of the last layers

only, something that PPFL does.

2.4 Layer-wise DNN Training for FL
Instead of training the complete DNN model in an end-to-end fash-

ion, one can train the model layer-by-layer from scratch, i.e., greedy
layer-wise training [6, 35]. This method starts by training a shal-

low model (e.g., one layer) until its convergence. Next, it appends

one more layer to the converged model and trains only this new

layer [5]. Usually, for each greedily added layer, themodel developer

builds a new classifier on top of it in order to output predictions

and compute training loss. Consequently, these classifiers provide

multiple early exits, one per layer, during the forward pass in infer-

ence [29]. Furthermore, recently this method was shown to scale

for large datasets such as ImageNet and to achieve performance

comparable to regular end-to-end ML [5]. Notably, all previous

studies on layer-wise training focused on generic ML.

Contribution. Our work is the first to build a DNN model in a FL

setting with privacy-preserving guarantees using TEEs, by lever-

aging the greedy layer-wise training, and to train each DNN layer

inside each FL client’s TEE. Thus, PPFL satisfies the constraint of

TEE’s limited memory while protecting the model from the afore-

mentioned privacy attacks. Interestingly, the classifiers built atop

each layer may also provide personalization opportunities for the

participating FL clients.

3 THREAT MODEL AND ASSUMPTIONS

Threat model. We consider a standard FL context where multiple

client devices train a DNN locally and send their (local) model pa-

rameters to a remote, centralized server, which aggregates these pa-

rameters to create a global model [7, 27, 43]. The goal of adversaries

is to obtain sensitive information embedded in the global model

through data reconstruction [16, 78] or inference attacks [45, 52].

We consider two types of (passive) adversaries: (i) users of client

devices who have access to distinct snapshots of the global model

and (ii) the server’s owner (e.g., a cloud or edge provider) who has

access to the updated model gradients. Adversaries are assumed

to be honest-but-curious, meaning that they allow FL algorithms

to run as intended while trying to infer as much information as

possible from the global model or gradients. Adversaries can have

full control (i.e., root privileges) of the server or the client device,

and can perform their attacks against any DNN layer. However,

attacks against the TEE, such as side-channel attacks (e.g., Volt-

pillager [12]), physical attacks (e.g., Platypus [41]) and those that

exploit weaknesses in TEEs (e.g., [38]) and their SDKs (e.g., [71])

are out of scope for this paper.

Assumptions.We assume that the server and enough participating

FL client devices have a TEE whose memory size is larger than the

largest layer of the DNN to be trained. This is the case in current

FL DNNs. However, in the unlikely case that a layer does not fit

in available TEEs, the network design needs to be adjusted with

smaller, but more layer(s), or a smaller training batch size. We also

assume that there is a secure way to bootstrap trust between the

server TEE and each of the client device TEE (e.g., using a slightly

modified version of the SIGMA key exchange protocol [32, 77], or

attested TLS [30]), and that key management mechanisms exist to

update and revoke keys when needed [55]. Finally, we assume that

the centralized server will forward data to/from its TEE. Yet, it is

important to note that if the server was malicious and would not

do this, this would only affect the availability of the system (i.e., the

security and privacy properties of our solution remain intact). This

type of Denial-of-Service (DoS) attack is hard to defend against and

is not considered within the standard TEE threat model.

4 PPFL FRAMEWORK
In this section, we first present an overview of the proposed system

and its functionalities (Sec. 4.1), and then detail how the framework

employs layer-wise training and aggregation in conjunction to

TEEs in FL (Sec. 4.2).

4.1 System Overview
We propose a Privacy-preserving Federated Learning framework

which allows clients to collaboratively train a DNN model while

keeping the model’s layers always inside TEEs during training.

Figure 1 provides an overview of the framework and the various

steps of the greedy layer-wise training and aggregation. In general,

starting from the first layer, each layer is trained until convergence,

before moving to the next layer. In this way, PPFL aims to achieve

full privacy preservation without significantly increasing system

cost. PPFL’s design provides the following functionalities:

Privacy-by-design Guarantee. PPFL ensures that layers are al-

ways protected from adversaries while they are being updated.

Privacy risks depend on the aggregation level and frequency with

which they happen, when exposing the model or its layers [16,

45, 47]. In PPFL, lower-level information (i.e., original data and at-

tributes) is not exposed because updated gradients during training

are not accessible from adversaries (they happen inside the TEEs).

This protects against DRAs and PIAs. However, when one of such

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and Nicolas Kourtellis

Clients

Private
Dataset

TEE
Move to next block of layers
after convergence

Class-
ifier

Class-
ifier

Class-
ifier

Class-
ifier

�

� �

Server

TEE

Configuration

Reporting

��	����	������
���������-�
�������

��-�����
��
���-�-�-��-���-��
��
�������
	���-�

 ������-�����	������-�-�

��
���������-�

��	�����

��
��-��

Public
Know-
ledge

�
�
�

� �
�
�

�� Forward pass
Backward pass

Data transmission

Public layers
Private layers

Class-
ifier

-�����������-�

Figure 1: A schematic diagram of the PPFL framework. The main phases follow the system design in [7].

layers is exposed after convergence, there is a risk of MIAs. We

follow a more practical approach based on the observation that

membership-related information is only sensitive in the last DNN
layer, making it vulnerable to MIAs as indicated in previous re-

search [47, 49, 52, 59]. To avoid this risk on the final model, PPFL

can keep the last layer inside the clients TEEs after training.

Device Selection.After the server and a set of TEE-enabled clients
agree on the training of a DNN model via FL, clients inform the

server about their TEE’s memory constraints. The server then

(re)constructs a DNN model suitable for this set of clients and se-

lects the clients that can accommodate the model layers within their

TEE. In each round, the server can select new clients and the device

selection algorithm can follow existing FL approaches [21, 53].

Secure Communication Channels. The server establishes two
secure communication channels with each of its clients: (i) one

from its REE to the client’s REE (e.g., using TLS) to exchange data

with clients and (ii) a logical one from its TEE to the client’s TEE for

securely exchanging private information (e.g., model layer training

information). In the latter case, the transmitted data is encrypted

using cryptographic keys known only to the server and client TEEs

and is sent over the REE-REE channel. It is important to note that

the secure REE-REE channel is only an additional security layer.

All privacy guarantees offered by PPFL are based on the hardware-

backed cryptographic keys stored inside TEEs.

Model Initialization and Configuration. The server configures
the model architecture, decides the layers to be protected by TEEs,

and then initializes model parameters inside the TEE (step 2○, Fig. 1).

The latter ensures clients’ local training starts with the same weight

distribution [43, 72]. In addition, the server configures other train-

ing hyper-parameters such as learning rate, batch size, and epochs,

before transmitting such settings to the clients (step 3○, Fig. 1).

In cases of typical ML tasks such as image recognition where

public knowledge is available such as pre-trained DNN models

or public datasets with features similar to the client private data,

the server can transfer this knowledge (especially in cross-device

FL [27]) in order to bootstrap and speed up the training process. In

both cases, this knowledge is contained in the first layers. Thus, the

clients leave the first layers frozen and only train the last several

layers of the global model. This training process is similar to the

concept of transfer learning [9, 56, 69], where, in our case, public

knowledge is transferred in a federated manner.

In PPFL, the server can learn from public models. Thus, during
initialization, the server first chooses a model pre-trained on public

data that have a similar distribution with private data. The server

keeps the first layers, removes the last layer(s), and assembles new

layer(s) atop the reserved first ones. These first layers are transferred

to clients and are always kept frozen (step 1○, Fig. 1). New layers,

attached to the reserved layers, are trained inside each client’s TEE,

and then aggregated inside the server’s TEE (steps 2○∼ 6○, Fig. 1).

In learning from public datasets, the server first performs an initial

training to build the model based on public datasets.

Local Training.After model transmission and configuration using

secure channels, each client starts local training on their data on

each layer via a model partitioned execution technique (step 4○,

Fig. 1). We detail this step in Sec. 4.2.

Reporting and Aggregation. Once local training of a layer is

completed inside TEEs, all participating clients report the layer

parameters to the server through secure channels (step 5○, Fig. 1).

Finally, the server securely aggregates the received parameters

within its TEE and applies FedAvg [43], resulting in a new global

model layer (step 6○, Fig. 1).

4.2 Layer-wise Training and Aggregation
In order to address the problem of limited memory inside a TEE

when training a DNN model, we modify the greedy layer-wise

learning technique proposed in [6] for general DNN training [5],

to work in the FL setting. The procedure of layer-wise training and

aggregation is detailed in the following Algorithms 1 and 2.

Algorithm 1. This algorithm details the actions taken by PPFL on

the server side. When not specified, operations are carried out out-

side the TEE (i.e., in the REE). First, the server initializes the global

DNN model with random weights or public knowledge (steps 1○-

2○, Fig. 1). Thus, each layer 𝑙 to be trained is initialized (𝜽𝑙) and
prepared for broadcast. The server checks all available devices and

constructs a set of participating clients whose TEE is larger than the

required memory usage of 𝑙 . Then, it broadcasts the model’s layer

to these participating clients (step 3○, Fig. 1), via ClientUpdate()
(see Algorithm 2). Upon receiving updates from all participating

clients, the server decrypts the layer weights, performs secure layer

aggregation and averaging inside its TEE (step 6○), and broadcasts

the new version of 𝑙 to the clients for the next FL round. Steps 2○∼ 6○
are repeated until the training of 𝑙 converges, or a fixed number of

PPFL: Privacy-preserving Federated Learning with Trusted Execution Environments MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

Algorithm 1: PPFL-Server with TEE
Input:
• Number of all clients: 𝑁

• TEE memory size of Client 𝑛: 𝑆 (𝑛)

• Memory usage of layers {1, ..., 𝐿} in training (forward and

backward pass in total): {𝑆1, ..., 𝑆𝐿}
• Communication rounds: 𝑅

Output: Aggregated final parameters: {𝜽 0
1
, ..., 𝜽 0

𝐿
}

% Layer-wise client updates
for 𝑙 ∈ {1, ..., 𝐿} do

% Select clients with enough TEE memory
Initialize participating client list J = {}
for 𝑛 ∈ {1, ..., 𝑁 } do

if 𝑆 (𝑛) > 𝑆𝑙 then
J←− J ∪ {𝑛}

Initialize 𝜽𝑙 (parameters of layers 𝑙) in TEE

for 𝑟 ∈ {1, ..., 𝑅} do
for 𝑗 ∈ J do

% clients’ local updating: see Algorithm 2
𝜽 (𝑗)
𝑙

=ClientUpdate(𝑙, 𝜽𝑙)

% FedAvg with Secure Aggregation
𝜽𝑙 =

1

size(J)
∑

𝑗 ∈J 𝜽
(𝑗)
𝑙

in TEE

Save 𝜽𝑙 from TEE as 𝜽 0
𝑙
in REE

return {𝜽 0
1
, ..., 𝜽 0

𝐿
}

rounds are completed. Then, this layer is considered fully trained

(𝜽 0
𝑙
), it is passed to the REE, and is broadcasted to all clients to

be used for training the next layer. Interestingly, PPFL also allows

grouping multiple layers into blocks and training each block inside

client TEEs in a similar fashion as the individual layers. This option

allows for better utilization of the memory space available inside

each TEE and reduces communication rounds for the convergence

of more than one layer at the same time.

Algorithm 2. This algorithm details the actions taken by PPFL on

the client side. Clients load the received model parameters from the

server and decrypt and load the target training layer 𝑙 inside their

TEEs. More specifically, in the front, this new layer 𝑙 connects to the

previous pre-trained layer(s) that are frozen during training. In the

back, the clients attach on 𝑙 their own derived classifier, which con-

sists of fully connected layers and a softmax layer as the model exit.

Then, for each epoch, the training process iteratively goes through

batches of data and performs both forward and backward passes [36]
to update both the layer under training and the classifier inside

the TEE (step 4○, Fig. 1). During this process, a model partitioned
execution technique is utilized, where intermediate representations

of the previously trained layers are passed from the REE to the

TEE via shared memory in the forward pass. After local training is

completed (i.e., all batches and epochs are done), each client sends

via the secure channel the (encrypted) layer’s weights from its TEE

to the server’s TEE (step 5○).

Algorithm 2: ClientUpdate(𝑙, 𝜽𝑙) with TEEs

Initialization:
• Local dataset X: data {𝒙} and labels {𝒚}
• Trained final parameters of all previous layers,

i.e., 𝜽 0
1
, 𝜽 0

2
, ..., 𝜽 0

𝑙−1
• Number of local training epochs: 𝐸

• Activation function: 𝜎 () and loss function: ℓ

• Classifier: 𝐶 ()
Input:
• Target layer: 𝑙

• Broadcast parameters of layer 𝑙 : 𝜽𝑙
Output: Updated parameters of layer 𝑙 : 𝜽𝑙

%Weights and biases of layers 1, ..., (𝑙 − 1) and 𝑙
for 𝑖 ∈ {1, ..., 𝑙 − 1} do
{𝑾𝑖 , 𝒃𝑖 } ←− 𝜽 0

𝑖
{𝑾𝑙 , 𝒃𝑙 } ←− 𝜽𝑙 in TEE

% Training process
for 𝑒 ∈ {1, .., 𝐸} do

for {𝒙,𝒚} ∈ X do

% Forward pass
Intermediate representation 𝑻0 = 𝒙
for 𝑖 ∈ {1, ..., 𝑙 − 1} do

𝑻𝑖 = 𝜎 (𝑾𝑖𝑻𝑖−1 + 𝒃𝑖)

𝑻𝑙 = 𝜎 (𝑾𝑙𝑻𝑙−1 + 𝒃𝑙)
ℓ ←− ℓ (𝐶 (𝑻𝑙),𝒚)

% Backward pass
𝜕ℓ
𝜕𝐶

to update parameters of 𝐶

% Updating layer l
𝑾𝑙 ←−𝑾𝑙 + 𝜕ℓ

𝜕𝑾𝑙
; 𝒃𝑙 ←− 𝒃𝑙 + 𝜕ℓ

𝜕𝒃𝑙

𝜽𝑙 = {𝑾𝑙 , 𝒃𝑙 } in TEE

return 𝜽𝑙

in TEE

Model Partitioned Execution. The above learning process is

based on a technique that conducts model training (including both

forward and backward passes) across REEs and TEEs, namely model

partitioned execution. The transmission of the forward activations

(i.e., intermediate representation) and updated parameters happens

between the REE and the TEE via shared memory. On a high level,

when a set of layers is in the TEE, activations are transferred from

the REE to the TEE (see Algorithm 2). Assuming global layer 𝑙 is

under training, the layer with its classifier 𝐶 (.) are executed in the

TEE, and the previous layers (i.e., 1 to 𝑙 − 1) are in the REE.

Before training, layer 𝑙 ’s parameters are loaded and decrypted

securely within the TEE. During the forward pass, local data 𝒙 are

inputted, and the REE processes the previous layers from 1 to 𝑙 − 1
and invokes a command to transfer the layer 𝑙 − 1’s activations

(i.e.,𝑇𝑙−1) to the secure memory through a buffer in shared memory.

The TEE switches to the corresponding invoked command in order

to receive layer 𝑙 − 1’s activations and processes the forward pass

of layer 𝑙 and classifier 𝐶 (.) in the TEE.

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and Nicolas Kourtellis

During the backward pass, the TEE computes the𝐶 (.)’s gradients
based on received labels 𝒚 and outputs of 𝐶 (.) (produced in the

forward pass) and uses them to compute the gradients of the layer

𝑙 in the TEE. The training of this batch of data (i.e., 𝒙) finishes
here, and there is no need to transfer 𝑙 ’s errors from the TEE to the

REE via shared memory, as previous layers are frozen outside the

TEE. After that, the parameters of layer 𝑙 are encrypted and passed

to the REE, ready to be uploaded to the server, corresponding to

the 𝐹𝑒𝑑𝑆𝐺𝐷 [11]. Further, 𝐹𝑒𝑑𝐴𝑣𝑔 [43] which requires multiple

batches to be processed before updating, repeats the same number

of forward and backward passes across the REE and the TEE for

each batch of data.

Algorithmic Complexity Analysis. Next, we analyze the algo-
rithmic complexity of PPFL and compare it to standard end-to-end

FL. For the global model’s layers 𝑙 ∈ {1, . . . , 𝐿}, we denote the for-
ward and backward pass cost on layer 𝑙 as F𝑙 and B𝑙 , respectively.
The corresponding cost on the classifier is denoted as F𝑐 and B𝑐 .
Then, in end-to-end FL, the total training cost for one client is:(

𝐿∑︁
𝑙=1

(F𝑙 + B𝑙) + F𝑐 + B𝑐

)
· 𝑆 · 𝐸 (1)

where 𝑆 is the number of steps in one epoch (i.e., number of samples

inside local datasets divided by the batch size). As in PPFL all layers

before the training layer 𝑙 are kept frozen, the cost of training layer

𝑙 is (∑𝑙
𝑘=1

F𝑘 + F𝑐 + B𝑙 + B𝑐) · 𝑆 · 𝐸. Then, by summation, we get the

total cost of all layers as:(
𝐿∑︁
𝑙=1

𝑙∑︁
𝑘=1

F𝑘 +
𝐿∑︁
𝑙=1

B𝑙 + 𝐿 · (F𝑐 + B𝑐)
)
· 𝑆 · 𝐸 (2)

By comparing Equations 1 and 2, we see the overhead of PPFL comes

from: (i) repeated forward pass in previous layers (𝑙 ∈ {1, . . . , 𝑙 − 1})
when training layer 𝑙 , and (ii) repeated forward and backward pass

for the classifier atop layer 𝑙 .

5 IMPLEMENTATION & EVALUATION SETUP
In this section, we first describe the implementation of the PPFL

system (Sec. 5.1), and then detail how we assess its performance on

various DNN models and datasets (Sec. 5.2) using different metrics

(Sec. 5.3). We follow common setups of past FL systems [43, 72] and

on-device TEE works [1, 49].

5.1 PPFL Prototype
We implement the client-side of PPFL by building on top of Dark-

neTZ [49], in order to support on-device FL with Arm TrustZone.

In total, we changed 4075 lines of code of DarkneTZ in C. We run

the client-side on a HiKey 960 Board, which has four ARM Cortex-

A73 and four ARM Cortex-A53 cores configured at 2362MHz and

533MHz, respectively, as well as a 4GB LPDDR4 RAM with 16MiB

TEE secure memory (i.e., TrustZone). Since the CPU power/fre-

quency setting can impact the TrustZone’s performance [1], we

execute the on-device FL training with full CPU frequency. In or-

der to emulate multiple device clients and their participation in FL

rounds, we use the HiKey board in a repeated, iterative fashion, one

time per client device. We implement the server-side of PPFL on

generic Darknet ML framework [58] by adding 751 lines of C code

Table 1: DNNs used in the evaluation of PPFL.

DNN Architecture

LeNet [37, 43] C20-MP-C50-MP-FC500-FC10

AlexNet [5, 34] C128×3-AP16-FC10
VGG9 [65, 72] C32-C64-MP-C128×2-MP-D0.05-C256×2

-MP-D0.1-FC512×2-FC10
VGG16 [65] C64×2-MP-C128×2-MP-C256×3-C512×3

-MP-FC4096×2-FC1000-FC10
MobileNetv2 [61] 68 layers, unmodified refer to [61] for details

Architecture notation: Convolution layer (C) with a given number of filters; filter size

is 5 × 5 in LeNet and 3 × 3 in AlexNet, VGG9, and VGG16. Fully Connected (FC) with

a given number of neurons. All C and FC layers are followed by ReLU activation

functions. MaxPooling (MP). AveragePooling (AP) with a given stride size. Dropout

layer (D) with a given dropping rate.

based on Microsoft OpenEnclave [46] with Intel SGX. For this, an

Intel Next Unit of Computing (ver.NUC8BEK, i3-8109U CPU, 8GB

DDR4-2400MHz) was used with SGX-enabled capabilities.

Besides, we developed a set of bash shell scripts to control the FL
process and create the communication channels. For the communi-

cation channels between server and client to be secure, we employ

standard cryptographic-based network protocols such as SSH and
SCP. All data leaving the TEE are encrypted using the Advanced

Encryption Standard (AES) in Cipher Block Chaining (CBC) mode

with random Initialization Values (IV) and 128-bit cryptographic

keys. Without loss of generality, we opted for manually hardcod-

ing the cryptographic keys inside the TEEs ourselves. Despite key

management in TEE-to-TEE channels being an interesting research

problem, we argue that establishing, updating, and revoking keys

do not happen frequently and hence the overhead these tasks in-

troduce is negligible compared to one from the DNN training.

The implementation of PPFL server and client is available for

replication and extension: https://github.com/mofanv/PPFL.

5.2 Models and Datasets
We focus on Convolutional Neural Networks (CNNs) since the pri-

vacy risks we consider (Sec. 3 and 4.1) have been extensively studied

on such DNNs [45, 52]. Also, layer-based learning methods mostly

aim at CNN-like DNNs [5]. Specifically, in our PPFL evaluation, we

employ DNNs commonly used in the relevant literature (Table 1).

For our experimental analysis, we used 𝑀𝑁𝐼𝑆𝑇 and 𝐶𝐼𝐹𝐴𝑅10,

two datasets commonly employed by FL researchers. Note that

in practice, FL training needs labeled data locally stored at the

clients’ side. Indeed, the number of labeled examples expected to be

present in a real setting could be fewer thanwhat these datasets may

allocate per FL client. Nonetheless, using them allows comparison

of our results with state-of-art end-to-end FL methods [16, 39, 72].

Specifically, LeNet is tested on MNIST [37] and all other models

are tested on CIFAR10 [33]. The former is a handwritten digit image

(28×28) dataset consisting of 60𝑘 training samples and 10𝑘 test

samples with 10 classes. The latter is an object image (32×32×3)
dataset consisting of 50𝑘 training samples and 10𝑘 test samples with

10 classes. We follow the setup in [43] to partition training datasets

into 100 parts, one per client, in two versions: i) Independent and

Identically Distributed (IID) where a client has samples of all classes;

ii) Non-Independent and Identically Distributed (Non-IID) where a

client has samples only from two random classes.

https://github.com/mofanv/PPFL

PPFL: Privacy-preserving Federated Learning with Trusted Execution Environments MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

5.3 Performance Metrics
The evaluation of PPFL prototype presented in the next section

focuses on assessing the framework from the point of view of (i)

privacy of data, (ii) ML model performance, and (iii) client-side

system cost. Although ML computations (i.e., model training) have

the same precision and accuracy no matter in REEs or TEEs, PPFL

changes the FL model training process into a layer-based training.

This affects ML accuracy and the number of communication rounds

needed for the model to converge (among others). Thus, we devise

several metrics and perform extensive measurements to assess

overall PPFL performance. We conduct system cost measurements

only on client devices since their computational resources are more

limited compared to the server. All experiments are done with

10% of the total number of clients (i.e., 10 out of 100) participating

in each communication round. We run FL experiments on our

PPFL prototype (Sec. 5.1) to measure the system cost. To measure

privacy risks and ML model performance, we perform simulations

on a cluster with multiple NVIDIA RTX6000 GPUs (24GB) nodes

running PyTorch v1.4.0 under Python v3.6.0.

Model Performance.We measure three metrics to assess the per-

formance of the model and PPFL-related process:

(1) Test Accuracy: ML accuracy of test data on a given FL model, for

a fixed number of communication rounds.

(2) Communication Rounds: Iterations of communication between

server and clients needed to achieve a particular test accuracy.

(3) Amount of communication: Total amount of data exchanged to

reach a test accuracy. Transmitted data sizes may be different

among communication rounds when considering different lay-

ers’ sizes in layer-wise training.

Privacy Assessment. We measure privacy risk of PPFL by apply-

ing three FL-applicable, privacy-related attacks:

(1) Data Reconstruction Attack (DRA) [78]

(2) Property Inference Attack (PIA) [45]

(3) Membership Inference Attack (MIA) [52]

We follow the proposing papers and their settings to conduct each

attack on the model trained in FL process.

Client-side System Cost.We monitor the efficiency of client on-

device training, and measure the following device costs for PPFL-

related process information:

(1) CPU Execution Time (s): Time the CPU was used for processing

the on-device model training, including time spent in REE and

the TEE’s user and kernel time, which is reported by using

function getrusage(RUSAGE_SELF).
(2) Memory Usage (MB): We add REE memory (the maximum resi-

dent set size in RAM, accessible by getrusage()) and allocated

TEE memory (accessible by mdbg_check(1)) to get the total

memory usage.

(3) Energy Consumption (J): Measured by all energy used to perform

one on-device training step when the model runs with/without

TEEs. For this, we use the Monsoon High Voltage Power Moni-
tor [50]. We configure the power to HiKey board as 12V voltage

while recording the current in a 50𝐻𝑧 sampling rate. Training

Table 2: Results of three privacy-related attacks (DRA, PIA
and MIA) on PPFL vs. end-to-end (E2E) FL. Average score re-
ported with 95% confidence interval in parenthesis.

Learning

Method

Model

Privacy-related Attack

DRA, in MSE
𝛼

PIA, in AUC
𝛿

MIA, in Prec.
𝜖

E2E

AlexNet

VGG9

0.017 (0.01)

0.008 (<0.01)

0.930 (0.03)

0.862 (0.05)

0.874 (0.01)

0.765 (0.04)

PPFL

AlexNet

VGG9

∼1.3 ∼0.5 0.506 (0.01)

0.507 (<0.01)

𝛼
MSE (mean-square error) measures the difference between constructed images and

target images (range is [0,∞) , and the lower MSE is, the more privacy loss);
𝛿
AUC

refers to the area under receiver operating curve;
𝜖
Prec. refers to Precision. The range

of both AUC and Prec. is [0.5, 1] (assuming 0.5 is for random guesses), and the higher

AUC or Prec. is, the more privacy loss).

with a high-performance power setting can lead to high temper-

ature and consequently under-clocking. Thus, we run each trial

with 2000 steps continuously, starting with 120s cooling time.

6 EVALUATION RESULTS
In this section, we present the experimental evaluation of PPFL

aiming to answer a set of key questions.

6.1 How Effectively does PPFL Thwart Known
Privacy-related Attacks?

To measure the exposure of the model to known privacy risks, we

conduct data reconstruction, property inference, and membership

inference attacks (i.e., DRAs, PIAs, and MIAs) on the PPFL model.

While training AlexNet and VGG9 models on CIFAR10 in an IID

setting. We compare the exposure of PPFL to these attacks against a

standard, end-to-end FL-trained model. Table 2 shows the average

performance of each attack in the same way it is measured in

literature [45, 52, 78]: Mean-Square-Error (MSE) for the DRA, Area-

Under-Curve (AUC) for the PIA, and Precision for the MIA.

From the results, it becomes clear that, while these attacks can

successfully disclose private information in regular end-to-end FL,

they fail in PPFL. As DRAs and PIAs rely on intermediate training

models (i.e., gradients) that remain protected, PPFL can fully defend

against them. The DRA can only reconstruct a fully noised image

for any target image (i.e., an MSE of ∼1.3 for the specific dataset),
while the PIA always reports a random guess on private properties

(i.e., an AUC of ∼0.5). Regarding the MIA on final trained models, as

PPFL keeps the last layer and its outputs always protected inside the

client’s TEE, it forces the adversary to access only previous layers,

which significantly drops the MIA’s advantage (i.e., Precision≈0.5).
Thus, PPFL fully addresses privacy issues raised by such attacks.

6.2 What is the PPFL Communication Cost?

Predefined ML Performance. Next, we measure PPFL’s commu-

nication cost to complete the FL process, when a specific ML per-

formance is desired. For this, we first execute the standard end-

to-end FL without TEEs for 150 rounds and record the achieved

ML performance. Subsequently, we set the same test accuracy as a

requirement, and measure the number of communication rounds

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and Nicolas Kourtellis

and amount of communication required by PPFL to achieve this

ML performance.

In this experiment, we set the number of local epochs at clients as

10. We use SGD as the optimization algorithm and set the learning

rate as 0.01, with a decay of 0.99 after each epoch. Momentum is

set to 0.5 and the batch size to 16. When training each layer locally,

we build one classifier on top of it. The classifier’s architecture

follows the last convolutional (Conv) layer and fully-connected

(FC) layers of the target model (e.g., AlexNet or VGG9). Thus, the

training of each global model’s layer progresses until all Conv layers

are finished. We choose AlexNet and VGG9 on CIFAR10, because

MNIST is too simple for testing. Then, the classifier atop all Conv

layers is finally trained to provide outputs for the global model.

Note that we also aggregate the client classifiers while training one

global layer to provide the test accuracy after each communication

round. We perform these experiments on IID and Non-IID data.

Overall, the results in Table 3 show that, while trying to reach the

ML performance achieved by the standard end-to-end FL system,

PPFL adds small communication overhead, if any, to the FL process.

In fact, in some cases, it can even reduce the communication cost,

while preserving privacy when using TEEs. As expected, using

Non-IID data leads to lower ML performance across the system,

which also implies less communication cost for PPFL as well.

The reason why in many cases PPFL has reduced communication

cost, while still achieving comparable ML performance, is that

training these models on datasets such as CIFAR10 may not require

training the complete model. Instead, during the early stage of

PPFL’s layer-wise training (e.g., first global layer+classifier), it can

already reach good ML performance, and in some cases even better

than training the entire model. We explore this aspect further in

the next subsection. Consequently, and due to the needed rounds

being fewer, the amount of communication is also reduced.

The increased cost when training VGG9 is due to the large num-

ber of neurons in the classifier’s FC layer connected to the first

Conv layer. Thus, even if the number of total layers considered (one

global layer + classifier) is smaller compared to the latter stages

(multiple global layers + classifier), the model size (i.e., number of

parameters) can be larger.

Indeed, we are aware that by training any of these models on

CIFAR10 [43] for more communication rounds, either the PPFL

or the regular end-to-end FL can reach higher test accuracy such

as 85% with standard 𝐹𝑒𝑑𝐴𝑣𝑔. However, the training rounds used

here are sufficient for our needs, as our goal is to evaluate the

performance of PPFL (i.e., what is the cost for reaching the same

accuracy), and not to achieve the best possible accuracy on this

classification task.

Communication Duration of FL Phases. In the next experi-

ment, we investigate the wall-clock time needed for running PPFL’s

phases in one communication round: broadcast of the layer from

server to clients, training of the layer at the client device, upload

the layer to the server, aggregate all updates from clients and ap-

ply 𝐹𝑒𝑑𝐴𝑣𝑔. Depending on each layer’s size and TEE memory size,

batch size can start from 1 and go as high as the TEE allows. How-

ever, since our models are uneven in layer sizes (with VGG9 being

the largest), we set the batch size to 1 to allow comparison, and also

capture an upper bound on the possible duration of each phase in

Table 3: Communication overhead (rounds and amount) of
PPFL to reach the same accuracy as end-to-end FL system.

Model Data

Baseline

Acc.
𝛼

Comm.

Rounds

Comm.

Amount

LeNet IID 98.93% 56 (0.37×)𝛿 0.38 ×
Non-IID 97.06%

𝜖
- -

AlexNet IID 68.50% 97 (0.65×) 0.63 ×
Non-IID 49.49% 79 (0.53×) 0.53 ×

VGG9 IID 63.09% 171 (1.14×) 2.87 ×
Non-IID 46.70% 36 (0.24×) 0.60 ×

𝛼
Acc.: Test accuracy of 150 communication rounds in end-to-end FL;

𝛿
1× refers to no overhead;

𝜖
PPFL reaches a maximum of 95.99%.

Table 4: Time duration of FL phases in one communication
round, when training LeNet, AlexNet andVGG9modelswith
PPFL and end-to-end (E2E) FL.

Model Method

Duration of FL phases (s)

B.cast
𝛼

Training Upload Aggr.
𝛿

Total

L
e
N
e
t E2E 4.520 2691.0 6.645 0.064 2702.3

PPFL 18.96 6466.2 7.535 1.887 6496.5

- layer 1 4.117 1063.3 1.488 0.426 1069.8

- layer 2 4.670 2130.6 1.627 0.692 2138.3

- layer 3 5.332 2315.2 1.745 0.676 2323.6

- clf.𝜖 4.845 957.16 2.675 0.093 964.87

A
l
e
x
N
e
t E2E 14.58 3772.0 6.122 0.061 3792.8

PPFL 57.24 14236 16.89 3.290 14316

- layer 1 16.20 2301.8 4.690 0.129 2322.9

- layer 2 12.56 4041.1 4.777 0.174 4058.8

- layer 3 10.31 4609.4 5.388 0.243 4625.6

- clf. 18.17 3283.8 2.033 2.744 3309.5

V
G
G
9 E2E 14.10 2867.1 8.883 0.067 2890.2

PPFL 353.5 21389 173.8 4.066 21924

- layer 1 127.5 4245.7 95.58 0.375 4469.5

- layer 2 77.22 2900.6 24.82 0.207 3003.1

- layer 3 79.18 3703.1 24.84 0.223 3807.6

- layer 4 27.05 2987.9 12.15 0.235 3027.6

- layer 5 21.47 2404.4 9.137 0.347 2435.7

- layer 6 10.95 2671.0 4.768 0.571 2687.9

- clf. 10.11 2476.4 2.478 2.108 2493.2

𝛼
B.cast: Broadcast;

𝛿
Aggr.: Aggregation;

𝜖
clf.: Classifier.

each model training. Indeed, we confirmed that increasing batch

size for small models that allow it (e.g., AlexNet with batch size=16),

incrementally reduces the duration of phases.

Table 4 shows the break-down of time taken for each phase, for

threemodels and two datasets (LeNet onMNIST; AlexNet and VGG9

on CIFAR10) and IID data. As expected, layer-wise FL increases the

total time compared to end-to-end FL because each layer is trained

separately, but the previously trained and finalized layers still need

to be processed in the forward pass. In fact, these results are in

line with the complexity analysis shown earlier in Sec. 4.2, i.e., to

finish the training of all layers, layer-wise training introduces a

3× or higher delay, similar to the number of layers. On the one

hand, we argue that applications can tolerate this additional delay

if they are to be protected from privacy-related attacks, despite the

execution time increase being non-negligible and up to a few hours

PPFL: Privacy-preserving Federated Learning with Trusted Execution Environments MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

of training. Indeed, models can be (re)trained on longer timescales

(e.g., weekly, monthly), and rounds can have a duration of 10s of

minutes, while being executed in an asynchronous manner. On the

other hand, training one layer in PPFL costs similar time to the

end-to-end FL training of the complete model. This highlights that

the minimum client contribution time is the same as end-to-end FL:

clients can choose to participate in portions of an FL round, and in

just a few FL rounds. For example, a client may contribute to the

model training for only a few layers in any given FL round.

Among all FL phases, local training costs the most, while the

time spent in server aggregation and averaging is trivial, regardless

if it is non-secure (i.e., end-to-end FL) or secure (PPFL). Regarding

VGG9, layer-wise training of early layers significantly increases the

communication time in broadcast and upload, because the Conv

layers are with a small number of filters and consequently the

following classifier’s FC layer has a large size. This finding hints

that selecting suitable DNNs to be trained in PPFL (e.g., AlexNet vs.

VGG9) is crucial for practical performance. Moreover, and according

to the earlier FL performance results (also see Table 2), it may not

be necessary to train all layers to reach the desired ML utility.

6.3 Is the PPFL ML Performance Comparable
to State-of-art FL?

In these experiments, we reduce the number of communication

rounds that each layer in PPFL is trained to 50, finish the training

process per layer, and compare its performance with centralized

layer-wise training, as well as regular end-to-end FL. The latter

trains the full model for all rounds up to that point. For example, if

PPFL trains the first layer for 50 rounds, and then the second layer

for 50 rounds, the end-to-end FLwill train all the model (end-to-end)

for 100 rounds.

As shown in Figure 2, training LeNet on the “easy” task of MNIST

data (IID or not) leads quickly to highML performance, regardless of

the FL system used. Training AlexNet on IID and Non-IID CIFAR10

data can lead to test accuracy of 74% and 60.78%, respectively, while

centralized training reaches 83.34%. Training VGG9, which is amore

complex model on IID and Non-IID CIFAR10 data leads to lower

performances of 74.60% and 38.35%, respectively, while centralized

training reaches 85.09%. We note the drop of performance in PPFL

when every new layer is considered into training. This is to be

expected, since PPFL starts from scratch with the new layer, leading

to a significant performance drop in the first FL rounds. Of course,

towards the end of the 50 rounds, PPFL performance matches and

in some cases surpasses that of end-to-end FL.

In general, with more layers being included in the training, the

test accuracy increases. Interestingly, in more complex models

(e.g., VGG9) with Non-IID data, PPFL can lead to a drop in ML

performance when the number of layers keeps increasing. In fact,

in these experiments, it only reaches ∼55% after finishing the sec-

ond layer and drops. One possible reason for this degradation is

that the first layers of VGG9 are small and maybe not capable of

capturing heterogeneous features among Non-IID data, which con-

sequently has a negative influence on the training of latter layers.

On the other hand, this reminds us that we can have early exits for

greedy layer-wise PPFL on Non-IID data. For example, clients that

do not have enough data, or already have high test accuracy after

●

●

●

●
●

●
● ●

layer 1 layer 2 layer 3 classifier

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

60%

70%

80%

90%

100%

Communication rounds

Te
st

 A
cc

.

Learning methods
● E2E & IID

E2E & Non−IID
PPFL & IID
PPFL & Non−IID

(a) LeNet on MNIST

For PPFL:

●

●

●

●
●

●

●
●

●
●

● ●
●

● ●
● ●

●
● ●

● ●
● ● ●

● ●
● ● ● ● ● ●

● ●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

● ●
●

● ●
● ● ● ● ● ● ● ● ● ●

●
● ●

● ● ● ● ● ● ● ●
● ● ● ● ●

layer 1 layer 2 layer 3 classifier

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Communication rounds

Te
st

 A
cc

.

(b) AlexNet on CIFAR10

For PPFL:

●●●

●

●

●

●

●

●

●
●

●
●

●
●●●

●●●
●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●

●● ●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●● ●●●●●●●
●●● ●● ●●

layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 classifier

1 25 50 75 100 125 150 175 200 225 250 275 300 325 350

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Communication rounds

Te
st

 A
cc

.

(c) VGG9 on CIFAR10

For PPFL:

Figure 2: Test accuracy of training LeNet, AlexNet, andVGG9
models on IID and Non-IID datasets when using PPFL. Hor-
izontal dashed lines refer to the accuracy that the central-
ized training reaches after every 50 epochs. Note: end-to-end
(E2E) FL trains the complete model rather than each layer,
and the ‘Layer No.’ at x-axis are only applicable to PPFL.

training the first layers can quit before participating in further com-

munication rounds. Overall, the layer-wise training outperforms

end-to-end FL during the training of the first or second layer.

We further discuss possible reasons for PPFL’s better ML perfor-

mance compared to end-to-end FL. On the one hand, this could be

due to some DNN architectures (e.g., VGG9) being more suitable for

layer-wise FL. For example, training each layer separately may al-

low PPFL to overcome possible local optima at which the backward

propagation can “get stuck” in end-to-end FL. On the other hand,

hyper-parameter tuning may help improve performance in both

layer-wise and end-to-end FL, always with the risk of overfitting

the data. Indeed, achieving the best ML performance possible was

not our focus, and more in-depth studying is needed in the future,

to understand under what setups layer-wise can perform better

than end-to-end FL.

6.4 What is the PPFL Client-Side System Cost?
We further investigate the system performance and costs on the

client devices with respect to CPU execution time, memory usage,

and energy consumption. Figure 3 shows the results for all three

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and Nicolas Kourtellis

14.6%

2.62%

13.22%

LeNet AlexNet VGG9

1 2 3 c 1 2 3 c 1 2 3 4 5 6 c

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Layer of models

C
P

U
 ti

m
e

(s
)

8.3%
18.31%

3.44%

LeNet AlexNet VGG9

1 2 3 c 1 2 3 c 1 2 3 4 5 6 c

0

10

20

30

40

50

60

70

Layer of models

M
em

or
y

us
ag

e
(M

B
)

9.45% 7.89%
21.19%

LeNet AlexNet VGG9

1 2 3 c 1 2 3 c 1 2 3 4 5 6 c

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Layer of models

E
ne

rg
y

co
ns

um
pt

io
n

(J
)

Figure 3: System performance of the client devices when training LeNet, AlexNet, and VGG9 using PPFL, measured on one
step of training (i.e., one batch of data). The light grey bar () refers to learning without TEEs, and the black bar () refers to
overhead when the layer under training is inside the TEE. Percentage (%) of the overhead (averaged on one model) is shown
above these bars. Horizontal dashed lines signify the cost of end-to-end FL. In x-axis, ‘c’ refers to ‘classifier’.

●

●

●

●
●

●

●
●

●
●

● ●
●

● ●
● ●

●
● ●

● ●
● ● ●

● ●
● ● ● ● ● ●

● ●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

● ●
●

● ●
● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ●

layer 1&2 layer 3 classifier

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Communication rounds

Te
st

 A
cc

.

Learning methods
● E2E & IID

E2E & Non−IID
PPFL & IID
PPFL & Non−IID

(a) AlexNet on CIFAR10

For PPFL:

● ● ●

●

●

●

●

●

●

●
●

●
●

●
● ● ●

● ● ●
● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

layer 1&2 layer 3&4 layer 5&6 classifier

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Communication rounds

Te
st

 A
cc

.

(b) VGG9 on CIFAR10

For PPFL:

Figure 4: Test accuracy of training AlexNet and VGG9 mod-
els on CIFAR10 (IID and Non-IID) when using PPFL with
blocks of two layers in TEE (Note: horizontal dashed lines
refer to the accuracy that the end-to-end (E2E) FL reaches
after 50 communication rounds).

metrics, when training LeNet on MNIST, AlexNet and VGG9 on

CIFAR10, on IID data. The metrics are computed for one step of

training (i.e., one batch of data). More training steps require analo-

gously more CPU time and energy, but do not influence memory

usage since the memory allocated for the model is reused for all

subsequent steps. Here, we compare PPFL with layer-wise training

without TEEs, to measure the overhead of using the TEE. Among

the trained models, the maximum overhead is 14.6% for CPU time,

18.31% for memory usage, and 21.19% for energy consumption. In

addition, when training each layer, PPFL has comparable results

with end-to-end training (i.e., horizontal dashed lines in Figure 3).

13.24%

8.46%

AlexNet VGG9

1 2 c 1 2 3 c
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Block of layers

CPU time (s)

32.71%
3.17%

AlexNet VGG9

1 2 c 1 2 3 c
0
4
8

12
16
20
24
28

Block of layers

Memory usage (MB)

7.63%

14.47%

AlexNet VGG9

1 2 c 1 2 3 c
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Block of layers

Energy consum.(J)

Figure 5: System performance of the client devices when
training AlexNet and VGG9models on CIFAR10 when using
PPFL with blocks of two layers in TEE (same settings as in
Figure 4), measured on one step of training. The light grey
bar () refers to learningwithout TEEs, and the black bar ()
refers to overhead when the block’s layers under training
are inside the TEE. Percentage (%) of the overhead is shown
above these bars. Horizontal dashed lines refer to the cost of
end-to-end FL. ‘c’ refers to ‘classifier’.

6.5 What is the PPFL ML and System Costs if
Blocks of Layers were Trained in Clients?

As explained in Algorithm 1 of Sec. 4.2, if the TEEs can hold more

than one layers, it is also possible to put a block of layers inside

the TEE for training. Indeed, heterogeneous devices and TEEs can

have different memory sizes, thus supporting a wide range of block

sizes. For these experiments, we assume all devices have the same

TEE size and construct 2-layer blocks, and measure the system’s

test accuracy and ML performance on CIFAR10. The performance

of three or more layers inside TEEs could be measured in a similar

fashion (if the TEE’s memory can fit them). We do not test LeNet

on MNIST because it can easily reach high accuracy (around 99%)

as shown earlier and in previous studies [43, 72].

Results in Figure 4 indicate that training blocks of layers can

reach similar or even better ML performance compared to training

each layer separately (i.e., see Fig. 2). It can also improve the test

accuracy of complex models such as VGG9, for which we noted a

degradation of ML performance caused by the first layer’s small size

PPFL: Privacy-preserving Federated Learning with Trusted Execution Environments MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

Table 5: Reduction of communication rounds and amount
when training 2-layer instead of 1-layer blocks.

Model Data Comm. Rounds Comm. Amount

AlexNet IID 0.65× −→ 0.18× 0.63× −→ 0.27×
Non-IID 0.53× −→ 0.29× 0.53× −→ 0.44×

VGG9 IID 1.14× −→ 0.43× 2.87× −→ 1.07×
Non-IID 0.24× −→ 0.11× 0.60× −→ 0.27×

and incapacity to model the data (see Fig. 2). In addition, compared

to training one layer at a time, training 2-layer blocks reduces the

total required communication to reach the desired ML performance.

In fact, while aiming to reach same baseline accuracy as in Table 3,

training 2-layer blocks requires half or less of communication cost

than 1-layer blocks see Table 5. Also, layer-wise training outper-

forms end-to-end FL for similar reasons as outlined for Figure 2.

Regarding the system cost, results across models show that the

maximum overhead is 13.24% in CPU time, 32.71% in memory usage,

and 14.47% in energy consumption (see Fig. 5). Compared to training

one layer at a time, training layer blocks does not always increase

the overhead. For example, overhead when running VGG9 drops

from 13.22% to 8.46% in CPU, from 2.44% to 3.17% in memory usage,

and from 21.19% to 14.47% in energy consumption. One explanation

is that combining layers into blocks amortizes the cost of “expensive”

with “cheap” layers. Interestingly, PPFL still has a comparable cost

with end-to-end FL training.

6.6 Can Bootstrapping the PPFL with Public
Knowledge Help?

We investigate how the backend server of PPFL can use existing,

public models to bootstrap the training process for a given task. For

this purpose, we leverage two models (MobileNetv2 and VGG16)

pre-trained on ImageNet to the classification task on CIFAR10.

Because these pre-trained models contain sufficient knowledge

relevant to the target task, training the last few layers is already

adequate for a good ML performance. Consequently, we can freeze

all Conv layers and train the last FC layers within TEEs, thus pro-

tecting them as well. By default, MobileNetv2 has one FC layer,

and VGG16 has three FC layers at the end. We test both cases that

one and three FC layers are attached and re-trained for these two

models, respectively. CIFAR10 is resized to 224 × 224 in order to

fit with the input size of these pre-trained models. We start with a

smaller learning rate of 0.001 to avoid divergence and a momentum

of 0.9 because the feature extractors are well-trained.

Test Accuracy. Figure 6 shows that the use of pre-trained first

layers (i.e., feature extractors) to bootstrap the learning process

can help the final PPFL models reach test accuracy similar to cen-

tralized training. Interestingly, transferring pre-trained layers from

VGG16 can reach higher test accuracy than MobileNetv2. This is ex-

pected because VGG16 contains many more DNN parameters than

MobileNetv2, which provides better feature extraction capabilities.

Surprisingly, attaching and training more FC layers at the end of

any of the models does not improve test accuracy. This can be due

to the bottleneck of the transferred feature extractors, which since

they are frozen, they do not allow the model to fully capture the

variability of the new data.

●

●●●

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

1 5 10 15 20 25 30 35 40 45 50
Communication rounds

Te
st

 A
cc

.

(a) Transfer from MobileNetv2

●
●●●

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

1 5 10 15 20 25 30 35 40 45 50
Communication rounds

Te
st

 A
cc

.

Learning methods
● Centralized

1 layer & IID
1 layer & Non−IID
3 layers & IID
3 layers & Non−IID

(b) Transfer from VGG16

Figure 6: Test accuracy of training on CIFAR10 (IID and
Non-IID) with public models MobileNetv2 and VGG16, pre-
trained on ImageNet). Both models are trained and tested
with 1 and 3 FC layers attached at the end of each model.

2.1% 6.8%

<0.1%3.1%

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

M
N1

M
N3

VGGs1

VGGs3

Models

C
P

U
 ti

m
e

(s
)

1.1% 0.7%

0.4% 1.3%

0
25
50
75

100
125
150
175
200
225

M
N1

M
N3

VGGs1

VGGs3

Models

M
em

or
y

us
ag

e
(M

B
)

<0.1%<0.1%

<0.1%
5.4%

0

1

2

3

4

5

6

M
N1

M
N3

VGGs1

VGGs3

Models

E
ne

rg
y

co
ns

um
pt

io
n

(J
)

Figure 7: System performance of client devices when train-
ing with transferred public models on CIFAR10, measured
on 1 step of training. Light grey bar (): learning without
TEEs; Black bar (): overhead when layers under training
are in TEE. Percentage (%) of overhead shown above bars.
MN1: MobileNetv2 with one layer for training (i.e., ‘1 layer’
in Figure 6a). VGGs: a small size of VGG16.

Client-side System Cost. In order to measure client-side cost un-

der this setting, we need to do some experimental adjustments. The

VGG16 (even the last FC layers) is too large to fit in TEEs. Thus, we

reduce the batch size to 1 and proportionally scale down all layers

(e.g., from 4096 to 1024 neurons for one FC layer). Indeed, scaling

layers may lead to biases in results, but the actual performance can-

not be worse than this estimation. As shown in [49], larger models

have less overhead because the last layers are relatively smaller

compared to the complete size of the model.

Interestingly, results shown in Figure 7 indicate that when we

train and keep the last FC layers inside the client’s on-device TEEs,

there is only a small overhead incurred in terms of CPU time (6.9%),

memory usage (1.3%), and energy consumption (5.5%) in either

model. These results highlight that transferring knowledge can be a

good alternative for bootstrapping PPFL training and keep system

overhead low. In addition, we note that when the server does not

have suitable public models, it is possible to first train a model on

public datasets that have similar distribution with local datasets.

We refer to Appendix A.1 for more details on experimental results.

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and Nicolas Kourtellis

7 DISCUSSION & FUTUREWORK

Key Findings. PPFL’s experimental evaluation showed that:

• Protecting the training process (i.e., gradient updates) inside

TEEs, and exposing layers only after convergence can thwart

data reconstruction and property inference attacks. Also, keeping

a model’s last layer inside TEEs mitigates membership inference

attacks.

• Greedy layer-wise FL can achieve comparable ML utility with

end-to-end FL. While layer-wise FL increases the total of com-

munication rounds needed to finish all layers, it can reach the

same test accuracy as end-to-end FL with fewer rounds (0.538×)
and amount of communication (1.002×).
• Most PPFL system cost comes from clients’ local training: up

to ∼15% CPU time, ∼18% memory usage, and ∼21% energy con-

sumption in client cost when training different models and data,

compared to training without TEEs.

• Training 2-layer blocks decreases communication cost by at

least half, and slightly increases system overhead (i.e., CPU time,

memory usage, energy consumption) in cases of small models.

• Bootstrapping PPFL training process with pre-trained models

can significantly increase ML utility, and reduce overall cost in

communications and system overhead.

Dishonest Attacks. The attacks tested here assume the classic

‘honest-but-curious’ adversary [57]. In FL, however, there are also

dishonest attacks such as backdoor [4, 67] or poisoning attacks [15],

whose goal is to actively change the global model behavior, e.g., for

surreptitious unauthorized access to the global model [26]. In the

future, we will investigate how TEEs’ security properties can defend

against such attacks.

Privacy and Cost Trade-off. PPFL guarantees ‘full’ privacy by

keeping layers inside TEEs. However, executing computations in

secure environments inevitably leads to system costs. To reduce

such costs, one can relax their privacy requirements, potentially

increasing privacy risks due inference attacks with higher “advan-

tage” [76]. For example, clients who do not care about high-level

information leakages (i.e., learned model parameters), but want to

protect the original local data, can choose to hide only the first lay-

ers of the model in TEEs. We expect that by dropping clients already

achieving good performance when training latter layers, we could

gain better performance. This may further benefit personalization

and achieve better privacy, utility, and cost trade-offs.

Model Architectures. The models tested in our layer-wise FL are

linear links cross consecutive layers. However, our framework can

be easily extended to other model architectures that have been stud-

ied in standard layer-wise training. For example, one can perform

layer-wise training on (i) Graph Neural Networks by disentan-

gling feature aggregation and feature transformation [74], and (ii)

Long Short-Term Memory networks (LSTMs), by adding hidden

layers [60]. There are other architectures that contain skipping

connections to jump over some layers such as ResNet [19]. No

layer-wise training has been investigated for ResNets, but train-

ing a block of layers could be attempted by including the jumping

shortcut inside a block.

Accelerating Local Training. PPFL uses only the CPU of client

devices for local training. Training each layer does not introduce

parallel processing on a device. Indeed, more effective ways to

perform this compute load can be devised. One way is that clients

could use specialized processors (i.e., GPUs) to accelerate training.

PPFL’s design can integrate such advancesmainly in twoways. First,

the client can outsource the first, well-trained, but non-sensitive

layers, to specialized processors that can share computation and

speed-up local training. Second, recently proposed GPU-based TEEs

can support intensive deep learning-like computation in high-end

servers [22, 24]. Thus, such TEEs on client devices can greatly

speed-up local training. However, as GPU-TEE still requires small

TCB to restrict attack surface, PPFL’s design can provide a way to

leverage limited TEE space for privacy-preserving local training.

Federated Learning Paradigms. PPFL was tested with 𝐹𝑒𝑑𝐴𝑣𝑔,

but there are other state-of-art FL paradigms that are compatible

with PPFL. PPFL leverages greedy layer-wise learning but does

not modify the hyper-parameter determination and loss function

(which have been improved in 𝐹𝑒𝑑𝑃𝑟𝑜𝑥 [39]) or aggregation (which

is neuron matching-based in 𝐹𝑒𝑑𝑀𝐴 [72]). Compared with PPFL

that trains one layer until convergence, 𝐹𝑒𝑑𝑀𝐴, which also uses

layer-wise learning, trains each layer for one round, and thenmoves

to the next layer. After finishing all layers, it starts again from the

first. Thus, 𝐹𝑒𝑑𝑀𝐴 is still vulnerable because gradients of one layer

are accessible to adversaries. PPFL could leverage 𝐹𝑒𝑑𝑀𝐴’s neuron-

matching technique when dealing with heterogeneous (i.e., Non-

IID) data [28]. Besides, our framework is compatible with other

privacy-preserving techniques (e.g., differential privacy) in FL. This

is useful during the model usage phase where some users may not

have TEEs. PPFL can also be useful to systems such as FLaaS [31]

that enable third-party applications to build collaborative ML mod-

els on the device shared by said applications.

8 CONCLUSION
In this work, we proposed PPFL, a practical, privacy-preserving

federated learning framework, which protects clients’ private infor-

mation against known privacy-related attacks. PPFL adopts greedy

layer-wise FL training and updates layers always inside Trusted Ex-

ecution Environments (TEEs) at both server and clients. We imple-

mented PPFL with mobile-like TEE (i.e., TrustZone) and server-like

TEE (i.e., Intel SGX) and empirically tested its performance. For the

first time, we showed the possibility of fully guaranteeing privacy

and achieving comparable MLmodel utility with regular end-to-end

FL, without significant communication and system overhead.

9 ACKNOWLEDGMENTS
We acknowledge the constructive feedback from the anonymous

reviewers. The research leading to these results received partial

funding from the EU H2020 Research and Innovation programme

under grant agreements No 830927 (Concordia), No 871793 (Accor-

dion), No 871370 (Pimcity), and EPSRC Databox and DADA grants

(EP/N028260/1, EP/R03351X/1). These results reflect only the au-

thors’ view and the Commission and EPSRC are not responsible

for any use that may be made of the information it contains.

PPFL: Privacy-preserving Federated Learning with Trusted Execution Environments MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

REFERENCES
[1] Amacher, J., and Schiavoni, V. On the performance of arm trustzone. In IFIP

International Conference on Distributed Applications and Interoperable Systems
(2019), Springer, pp. 133–151.

[2] Aono, Y., Hayashi, T., Wang, L., Moriai, S., et al. Privacy-preserving deep learn-

ing via additively homomorphic encryption. IEEE Transactions on Information
Forensics and Security 13, 5 (2017), 1333–1345.

[3] Bagdasaryan, E., Poursaeed, O., and Shmatikov, V. Differential privacy has

disparate impact on model accuracy. In Advances in Neural Information Processing
Systems (2019), pp. 15479–15488.

[4] Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., and Shmatikov, V. How to

backdoor federated learning. In International Conference on Artificial Intelligence
and Statistics (2020), PMLR, pp. 2938–2948.

[5] Belilovsky, E., Eickenberg, M., and Oyallon, E. Greedy layerwise learning

can scale to imagenet. In International conference on machine learning (2019),

PMLR, pp. 583–593.

[6] Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. Greedy layer-wise

training of deep networks. Advances in neural information processing systems 19
(2006), 153–160.

[7] Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov,

V., Kiddon, C., Konečnỳ, J., Mazzocchi, S., McMahan, H. B., et al. Towards

federated learning at scale: System design. In Conference on Machine Learning
and Systems (2019).

[8] Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel,

S., Ramage, D., Segal, A., and Seth, K. Practical secure aggregation for privacy-

preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (2017), pp. 1175–1191.

[9] Brownlee, J. A Gentle Introduction to Transfer Learning for Deep Learning, 2019
(accessed November 11, 2020).

[10] Chen, H., Fu, C., Rouhani, B. D., Zhao, J., and Koushanfar, F. Deepattest: An

end-to-end attestation framework for deep neural networks. In 2019 ACM/IEEE
46th Annual International Symposium on Computer Architecture (ISCA) (2019),
IEEE, pp. 487–498.

[11] Chen, J., Pan, X., Monga, R., Bengio, S., and Jozefowicz, R. Revisiting dis-

tributed synchronous sgd. In ICLR Workshop Track (2016).

[12] Chen, Z., Vasilakis, G., Murdock, K., Dean, E., Oswald, D., and Garcia, F. D.

Voltpillager: Hardware-based fault injection attacks against intel SGX enclaves

using the SVID voltage scaling interface. In 30th USENIX Security Symposium
(Vancouver, B.C., Aug. 2021).

[13] Costan, V., and Devadas, S. Intel sgx explained. IACR Cryptol. ePrint Arch. 2016,
86 (2016), 1–118.

[14] Dwork, C., Roth, A., et al. The algorithmic foundations of differential privacy.

Foundations and Trends in Theoretical Computer Science 9, 3-4 (2014), 211–407.
[15] Fang, M., Cao, X., Jia, J., and Gong, N. Local model poisoning attacks to

byzantine-robust federated learning. In 29th USENIX Security Symposium (2020),

pp. 1605–1622.

[16] Geiping, J., Bauermeister, H., Dröge, H., and Moeller, M. Inverting

gradients–how easy is it to break privacy in federated learning? arXiv preprint
arXiv:2003.14053 (2020).

[17] Geyer, R. C., Klein, T., and Nabi, M. Differentially private federated learning:

A client level perspective. arXiv preprint arXiv:1712.07557 (2017).

[18] Gu, Z., Huang, H., Zhang, J., Su, D., Jamjoom, H., Lamba, A., Pendarakis, D.,

and Molloy, I. Yerbabuena: Securing deep learning inference data via enclave-

based ternary model partitioning. arXiv preprint arXiv:1807.00969 (2018).
[19] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recog-

nition. In Proceedings of the IEEE conference on computer vision and pattern
recognition (2016), pp. 770–778.

[20] Hitaj, B., Ateniese, G., and Perez-Cruz, F. Deep models under the gan: infor-

mation leakage from collaborative deep learning. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (2017), pp. 603–618.

[21] Huang, T., Lin, W., Wu, W., He, L., Li, K., and Zomaya, A. Y. An efficiency-

boosting client selection scheme for federated learning with fairness guarantee.

arXiv preprint arXiv:2011.01783 (2020).
[22] Hunt, T., Jia, Z., Miller, V., Szekely, A., Hu, Y., Rossbach, C. J., and Witchel,

E. Telekine: Secure computing with cloud gpus. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’20) (2020), pp. 817–833.

[23] Hunt, T., Song, C., Shokri, R., Shmatikov, V., andWitchel, E. Chiron: Privacy-

preserving machine learning as a service. arXiv preprint arXiv:1803.05961 (2018).
[24] Jang, I., Tang, A., Kim, T., Sethumadhavan, S., and Huh, J. Heterogeneous

isolated execution for commodity gpus. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems (2019), pp. 455–468.

[25] Jayaraman, B., and Evans, D. Evaluating differentially private machine learning

in practice. In 28th USENIX Security Symposium (USENIX Security 19) (Santa
Clara, CA, Aug. 2019), USENIX Association, pp. 1895–1912.

[26] Jere, M. S., Farnan, T., and Koushanfar, F. A taxonomy of attacks on federated

learning. IEEE Security & Privacy (2020), 0–0.

[27] Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N.,

Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., et al. Advances and

open problems in federated learning. arXiv preprint arXiv:1912.04977 (2019).

[28] Katevas, K., Bagdasaryan, E., Waterman, J., Safadieh, M. M., Birrell, E.,

Haddadi, H., and Estrin, D. Policy-based federated learning. arXiv preprint
arXiv:2003.06612 (2021).

[29] Kaya, Y., Hong, S., and Dumitras, T. Shallow-deep networks: Understanding

and mitigating network overthinking. In International Conference on Machine
Learning (2019), PMLR, pp. 3301–3310.

[30] Knauth, T., Steiner, M., Chakrabarti, S., Lei, L., Xing, C., and Vij, M.

Integrating remote attestation with transport layer security. arXiv preprint
arXiv:1801.05863 (2018).

[31] Kourtellis, N., Katevas, K., and Perino, D. Flaas: Federated learning as a

service. In Workshop on Distributed ML (2020), ACM CoNEXT.

[32] Krawczyk, H. Sigma: The ‘sign-and-mac’approach to authenticated diffie-

hellman and its use in the ike protocols. In Annual International Cryptology
Conference (2003), Springer, pp. 400–425.

[33] Krizhevsky, A., Hinton, G., et al. Learning multiple layers of features from

tiny images. Citeseer (2009).
[34] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with

deep convolutional neural networks. Communications of the ACM 60, 6 (2017),
84–90.

[35] Larochelle, H., Bengio, Y., Louradour, J., and Lamblin, P. Exploring strategies

for training deep neural networks. Journal of machine learning research 10, 1
(2009).

[36] LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature 521, 7553 (2015),
436–444.

[37] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning

applied to document recognition. Proceedings of the IEEE 86, 11 (1998), 2278–2324.
[38] Lee, J., Jang, J., Jang, Y., Kwak, N., Choi, Y., Choi, C., Kim, T., Peinado, M., and

Kang, B. B. Hacking in Darkness: Return-Oriented Programming against Secure

Enclaves. In Proceedings of the 26th USENIX Conference on Security Symposium
(2017), pp. 523–539.

[39] Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., and Smith, V. Fed-

erated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127
(2018).

[40] Linaro.org. Open Portable Trusted Execution Environment, 2020 (accessed Sep-

tember 3, 2020).

[41] Lipp, M., Kogler, A., Oswald, D., Schwarz, M., Easdon, C., Canella, C., and

Gruss, D. PLATYPUS: Software-based Power Side-Channel Attacks on x86. In

2021 IEEE Symposium on Security and Privacy (SP) (2021), IEEE.
[42] Liu, Y., Kang, Y., Xing, C., Chen, T., and Yang, Q. A secure federated transfer

learning framework. IEEE Intelligent Systems (2020).
[43] McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A.

Communication-efficient learning of deep networks from decentralized data.

In Artificial Intelligence and Statistics (2017), PMLR, pp. 1273–1282.

[44] McMahan, H. B., Ramage, D., Talwar, K., and Zhang, L. Learning differentially

private recurrent language models. In International Conference on Learning
Representations (2018).

[45] Melis, L., Song, C., De Cristofaro, E., and Shmatikov, V. Exploiting unintended

feature leakage in collaborative learning. In 2019 IEEE Symposium on Security
and Privacy (SP) (2019), IEEE, pp. 691–706.

[46] Microsoft. Open Enclave SDK, 2020 (accessed Decemenber 4, 2020).

[47] Mo, F., Borovykh, A., Malekzadeh, M., Haddadi, H., and Demetriou, S. Layer-

wise characterization of latent information leakage in federated learning. ICLR
Distributed and Private Machine Learning workshop (2021).

[48] Mo, F., and Haddadi, H. Efficient and private federated learning using tee. In

EuroSys (2019).
[49] Mo, F., Shamsabadi, A. S., Katevas, K., Demetriou, S., Leontiadis, I., Cav-

allaro, A., and Haddadi, H. Darknetz: towards model privacy at the edge

using trusted execution environments. In Proceedings of the 18th International
Conference on Mobile Systems, Applications, and Services (2020), pp. 161–174.

[50] Monsoon. Monsoon solutions inc. home page. https://www.msoon.com/, 2020

(accessed November 12, 2020).

[51] Naehrig, M., Lauter, K., and Vaikuntanathan, V. Can homomorphic encryp-

tion be practical? In Proceedings of the 3rd ACM workshop on Cloud computing
security workshop (2011), pp. 113–124.

[52] Nasr, M., Shokri, R., and Houmansadr, A. Comprehensive privacy analysis of

deep learning: Passive and active white-box inference attacks against centralized

and federated learning. In 2019 IEEE Symposium on Security and Privacy (SP)
(2019), IEEE, pp. 739–753.

[53] Nishio, T., and Yonetani, R. Client selection for federated learning with hetero-

geneous resources in mobile edge. In IEEE International Conference on Communi-
cations (ICC) (2019), IEEE, pp. 1–7.

[54] Ohrimenko, O., Schuster, F., Fournet, C., Mehta, A., Nowozin, S., Vaswani,

K., and Costa, M. Oblivious multi-party machine learning on trusted processors.

In 25th USENIX Security Symposium (2016), pp. 619–636.

[55] Paladi, N., Karlsson, L., and Elbashir, K. Trust Anchors in Software Defined

Networks. In Computer Security (2018), pp. 485–504.

https://www.msoon.com/

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and Nicolas Kourtellis

[56] Pan, S. J., and Yang, Q. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering 22, 10 (2009), 1345–1359.

[57] Paverd, A., Martin, A., and Brown, I. Modelling and automatically analysing

privacy properties for honest-but-curious adversaries. Tech. Rep. (2014).
[58] Redmon, J. Darknet: Open source neural networks in c. http://pjreddie.com/

darknet/, 2013–2016.

[59] Sablayrolles, A., Douze, M., Schmid, C., Ollivier, Y., and Jégou, H. White-box

vs black-box: Bayes optimal strategies for membership inference. In International
Conference on Machine Learning (2019), pp. 5558–5567.

[60] Sagheer, A., and Kotb, M. Unsupervised pre-training of a deep lstm-based

stacked autoencoder for multivariate time series forecasting problems. Scientific
reports 9, 1 (2019), 1–16.

[61] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. Mo-

bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE
conference on computer vision and pattern recognition (2018), pp. 4510–4520.

[62] Schuster, F., Costa, M., Fournet, C., Gkantsidis, C., Peinado, M., Mainar-

Ruiz, G., and Russinovich, M. Vc3: Trustworthy data analytics in the cloud using

sgx. In 2015 IEEE Symposium on Security and Privacy (2015), IEEE, pp. 38–54.

[63] Microsoft SEAL (release 3.5). https://github.com/Microsoft/SEAL, Apr. 2020.

Microsoft Research, Redmond, WA.

[64] Shokri, R., Stronati, M., Song, C., and Shmatikov, V. Membership inference

attacks against machine learning models. In 2017 IEEE Symposium on Security
and Privacy (SP) (2017), IEEE, pp. 3–18.

[65] Simonyan, K., and Zisserman, A. Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
[66] Subramani, P., Vadivelu, N., and Kamath, G. Enabling fast differentially private

sgd via just-in-time compilation and vectorization. arXiv preprint arXiv:2010.09063
(2020).

[67] Sun, Z., Kairouz, P., Suresh, A. T., andMcMahan, H. B. Can you really backdoor

federated learning? arXiv preprint arXiv:1911.07963 (2019).
[68] Testuggine, D., and Mironov, I. Introducing Opacus: A high-speed library for

training PyTorch models with differential privacy, 2020 (accessed January 1, 2021).

[69] Torrey, L., and Shavlik, J. Transfer learning. In Handbook of research on
machine learning applications and trends: algorithms, methods, and techniques. IGI
global, 2010, pp. 242–264.

[70] Tramèr, F., and Boneh, D. Slalom: Fast, verifiable and private execution of

neural networks in trusted hardware. In International Conference on Learning
Representations (ICLR) (2019).

[71] Van Bulck, Jo and Oswald, David and Marin, Eduard and Aldoseri, Ab-

dulla and Garcia, Flavio D. and Piessens, Frank. A Tale of Two Worlds:

Assessing the Vulnerability of Enclave Shielding Runtimes. In Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security (CCS) (2019),
pp. 1741–1758.

[72] Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., and Khazaeni, Y. Fed-

erated learning with matched averaging. arXiv preprint arXiv:2002.06440 (2020).
[73] Yeom, S., Giacomelli, I., Fredrikson, M., and Jha, S. Privacy risk in machine

learning: Analyzing the connection to overfitting. In 2018 IEEE 31st Computer
Security Foundations Symposium (CSF) (2018), IEEE, pp. 268–282.

[74] You, Y., Chen, T., Wang, Z., and Shen, Y. L2-gcn: Layer-wise and learned

efficient training of graph convolutional networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2020), pp. 2127–2135.

[75] Zhang, X., Li, F., Zhang, Z., Li, Q., Wang, C., and Wu, J. Enabling execution

assurance of federated learning at untrusted participants. In IEEE INFOCOM
2020-IEEE Conference on Computer Communications (2020), IEEE, pp. 1877–1886.

[76] Zhao, B. Z. H., Kaafar, M. A., and Kourtellis, N. Not one but many tradeoffs:

Privacy vs. utility in differentially private machine learning. In Cloud Computing
Security Workshop (2020), ACM CCS.

[77] Zhao, S., Zhang, Q., Qin, Y., Feng, W., and Feng, D. Sectee: A software-based

approach to secure enclave architecture using tee. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security (2019), pp. 1723–

1740.

[78] Zhu, L., Liu, Z., and Han, S. Deep leakage from gradients. In Advances in Neural
Information Processing Systems (2019), pp. 14774–14784.

http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://github.com/Microsoft/SEAL

PPFL: Privacy-preserving Federated Learning with Trusted Execution Environments MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

A APPENDIX
A.1 Transferring Public Datasets
The server can potentially gather data that have a similar distri-

bution to clients’ private data. In initialization, the server trains

a global model based on the gathered data rather than using one

existing model. Then, the server broadcasts the trained model to

clients’ devices. Clients feed their private data into the model but

update only the last layers inside the TEE during local training.

Also, only the last layers being trained are uploaded to the server

for secure aggregation. Because the server holds public data, we

expect it to retrain the complete model before each communication

round in order to keep fine-tuning the first layers. Here, we fix the

communication rounds to 20 and measure only the test accuracy.

We expect the system cost to be similar to transferring from models

because, similarly, only the last layers are trained at the client-side.

40%

50%

60%

70%

80%

90%

100%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Frac. of public data (IID)

Te
st

 A
cc

.

Training last

1 layer 2 layers

3 layers All 40%

50%

60%

70%

80%

90%

100%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Frac. of public data (Non−IID)

Te
st

 A
cc

.

(a) Transfer from public MNIST, to train LeNet.

●

●

●
● ●

● ●
● ●

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Frac. of public data (IID)

Te
st

 A
cc

.

Training last
● 1 layer 2 layers 3 layers

4 layers 5 layers 6 layers

7 layers 8 layers All
●

● ●

●
●

●

●
●

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Frac. of public data (Non−IID)

Te
st

 A
cc

.

(b) Transfer from public CIFAR10, to train VGG9.

Figure 8: Test accuracy when learning with public datasets.
The short red line () starting from y-axis refers to end-to-
end FL. Each trail runs for 10 times, and error bars refer to
95% confidence interval (Note: In the top left figure, test accu-
racy is very high and almost the same, as the range of y-axis
is set as the same for the same dataset (i.e., MNIST here). In
the bottom right figure (i.e., for CIFAR10), several trails fail
to train and thus corresponding points are not plotted).

Test accuracy results are shown in Figure 8. It is indicated that

in general when the server holds more public data, the final global

model can reach a higher test accuracy. This is as expected since the

server gathers a larger part of the training datasets. With complete

training datasets, this process will finally become centralized train-

ing. Nevertheless, this indication is not always held. For example,

in the IID case (see the two left plots in Figure 8), when training all

layers, servers with public data of 0.1 fraction outperform servers

without public data, i.e., the end-to-end FL, while regarding Non-

IID of CIFAR10, servers with 0.1 fraction cannot outperform that

without public data (see right plots in Figure 8b). One reason for

it is that the first layers, which are trained on public datasets, can-

not represent all features of privacy datasets. We also observe that

when the server does not have enough public data (e.g., 0.1 frac-

tion), training only the last 1 or 2 layers can lead to extremely low

performance or even failure. Still, this is because the first layers

cannot represent sufficiently the clients’ datasets.

Another observation is that the number of training last layers

does not have a significant influence on test accuracy in terms of

IID cases, especially when the server holds more public data. This

is because learning from IID public data is able to represent the

feature space of the complete (private) training datasets. However,

the results change when it comes to the Non-IID case. The number

of training last layers has a significant influence on test accuracy.

For instance, regarding VGG9, training only the last 1 or 2 layers at

the client-side performs much worse compared to training 3 or 4

layers (see right plots in Figure 8b). Moreover, training 3 or 4 layers

tend to have better test accuracy than training more layers (e.g., all

layers). One explanation is that the feature extraction capability of

first layers is good enough when the server has many public data,

so fine-tuning these first layers at the client (e.g., training all layers)

may destroy the model and consequently drop the accuracy.

Overall, by training only the last several layers at the client-

side, PPFL with public datasets can guarantee privacy, and in the

meanwhile, achieve better performance than that of training all

layers.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Trusted Execution Environments (TEE)
	2.2 Privacy Risks in FL
	2.3 Privacy-preserving ML using TEEs
	2.4 Layer-wise DNN Training for FL

	3 Threat Model and Assumptions
	4 PPFL Framework
	4.1 System Overview
	4.2 Layer-wise Training and Aggregation

	5 Implementation & Evaluation Setup
	5.1 PPFL Prototype
	5.2 Models and Datasets
	5.3 Performance Metrics

	6 Evaluation Results
	6.1 How Effectively does PPFL Thwart Known Privacy-related Attacks?
	6.2 What is the PPFL Communication Cost?
	6.3 Is the PPFL ML Performance Comparable to State-of-art FL?
	6.4 What is the PPFL Client-Side System Cost?
	6.5 What is the PPFL ML and System Costs if Blocks of Layers were Trained in Clients?
	6.6 Can Bootstrapping the PPFL with Public Knowledge Help?

	7 Discussion & Future Work
	8 Conclusion
	9 Acknowledgments
	References
	A Appendix
	A.1 Transferring Public Datasets

