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A B S T R A C T

In this work, we tackle the problem of classifying websites domain names to a category, e.g., mapping bbc.com
to the "News and Media" class. Domain name classification is challenging due to the high number of class labels
and the highly skewed class distributions. Differently from prior efforts that need to crawl and use the web
pages’ actual content, we rely only on traffic logs passively collected, observing traffic regularly flowing in the
network, without the burden to crawl and parse web pages. We exploit the information carried by network
logs, using just the name of the websites and the sequence of visited websites by users. For this, we propose
and evaluate different classification methods based on machine learning. Using a large dataset with hundreds
of thousands of domain names and 25 different categories, we show that semi-supervised learning methods are
more suitable for this task than traditional supervised approaches. Using graphs, we incorporate in the classifier
aspects not strictly related to the labeled data, and we can classify most of the unlabeled domains. However,
in this framework, classification scores are lower than those usually found when exploiting the page-specific
content. Our work is the first to perform an extensive evaluation of domain name classification using only
passive flow-level logs to the best of our knowledge.
1. Introduction

The latest estimations show that there are over 1.6 billion websites
on the Internet, distributed over more than 268 million domains.1
With this ever-growing nature of the Web, researchers and practitioners
resort more and more to automated approaches bases on machine
learning to process and understand such vast variety. A common ma-
chine learning classification task is to assign a category to a domain
(i.e., mapping to a category such as ‘‘News and Media’’) [1]. This task is
the focus of our paper and has several applications such as information
integration [2], building efficient focused crawler or vertical search
engines [3], helping to choose the appropriate model for extracting in-
formation from a web page [4], improving quality of search results [5],
constructing and expanding web directories [6], web filtering [7] and
advertising [8].

In this paper focus, websites are URLs such as https://www.bbc.
com/news/today.html, whereas domains refer to the URL domain only,
i.e., www.bbc.com. Our goal is to perform domain classification using
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large flow level logs only. We specifically consider logs collected by
passively monitoring the network traffic, where a passive sniffer iden-
tifies TCP or UDP flows, and recovers the name of the servers serving
such flows. Each flow contains the client identifier (e.g., the client IP
address — properly anonymized in our data) and the domain name
of the server (recovered directly from the HTTP request, or DNS and
TLS negotiation when HTTPS is in place). Given the flow sequence,
each with the timestamp of when the request was observed, we want
to automatically assign each domain a category, assuming to know
only a small subset of domain categories (e.g., via manual labeling).
This problem falls in the supervised classification class, and we aim at
training a classifier based on different machine learning approaches.

The problem of classifying domain names is not new; various re-
searchers studied it in the past [9–11]. However, differently from prior
efforts, we focus on passive flow level traces, and we are limited to little
information. No information on web page content (e.g., their HTML
content, metadata, objects, images, etc.) is available to our classifier
vailable online 28 January 2021
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by assumption — since we rely on passively collected data. Since
we do not require to collect and analyze the content of the pages,
our approach is scalable, and it naturally factors the popularity of
websites (the more the users are visiting a website, the more data we
collect about it), the users’ habits, and the diversity of the devices
and applications they use to access the Internet. Note also that the
rise of encryption in the web via HTTPS/TLS, flow traces are the only
information that is still available to Internet Service Providers (ISP) and
network administrators [12].

Given the importance of such a form of data, and the easiness of
collecting them, some prior efforts studied the website classification
problem using passive traces only (see Section 2 for a discussion).
However, previous works usually limit themselves to a handful of
domains and very small datasets. Here, we leverage the information
contained in data collected from real users from our University campus
in Turin. We collect 40 days of traces, where we extract several hundred
thousand unique domains. From these, we extract the domains related
to explicit visits to websites (called Core domains) building on our
previous work [13]. We obtain more than 14 000 unique core domains.

For labeling, we take as ground truth the categories given by
SimilarWeb, an open service providing 25 non-overlapping different
categories. When compared to other publicly available repositories of
domain classes such as Curlie (formerly known as DMOZ), SimilarWeb
provides better coverage in our use case (see [14] for how critical this
labeling could be). SimilarWeb’s richness in the number of classes (25)
implies that some of them may overlap. Hence, we do not expect that
the results can compare to the ones with fewer classes. Despite offering
a large dataset, SimilarWeb allows us to label only a small fraction
of domains in our trace (about 2000). This limitation strengthens our
work motivation to use a machine learning approach that can classify
the remaining 86% of data.

For the classification task, we thoroughly compare several differ-
ent methods, including the ones previously proposed in the literature
in other contexts, that we adapt to our use case. Next, we investi-
gate graph-based semi-supervised methods [15] where the nodes are
the domains, while the edges factor the different similarities between
domains.

Results show that our semi-supervised method can achieve the best
results with average accuracy in the order of 0.52. Albeit low at first
glance, these scores represent a gain of 300% when compared to the
naive random classifier (0.52 vs. 0.13), and a gain of about 27%
compared to the best performing supervised method (0.52 vs. 0.41).
Granting that we tackle a classification problem with 25 classes, our
results represent an improvement to prior proposals that considered
both a much smaller dataset and a reduced number of classes.

Our main contributions in this paper are (i) the specific focus
on data that can be collected by simply passively observing network
traffic, (ii) the exploitation of the semi-supervised method, and (iii)
the in-depth comparison of different approaches. Our analysis may
serve as a guide for future works aiming at exploring passive flow
level data, possibly integrating it with active crawlers. We aim at
fostering future research and the reproducibility of results. For this, we
release the labeled dataset used for this analysis and the Python scripts
containing the code for the machine learning approaches and the used
parameters [16].

The rest of this paper is organized as follows. In Section 2, we
present related work on the subject. In Section 3, we discuss on the
possible approaches. In Section 4, we present the supervised method-
ology to solve the classification task, while in Section 5, we describe
the semi-supervised methods. In Section 6, we define our dataset and
its preprocessing, reporting in Section 7 all the results of the method-
ologies. Finally, we conclude the paper in Section 8 with an outline of
2

the results.
2. Related work

In this section, we review some of the previous efforts focused on
domain and website classification tasks. Previous works may be cate-
gorized into three broad cases. Content-based methods, which explore
HTML, Images or Video (Section 2.1). URL and link methods, which
explore the textual tokens in the URLs as well as hyperlinks across
pages (Section 2.2). Finally, some approaches focus on traffic requests
(Section 2.3). Given that we are limited to TCP traces, we focus on
adapting methods taken from the second and third classes.

2.1. Content based approaches

Content-based approaches rely on document contents or their brief
descriptions as extracted by visiting the web page. The web page
content can include texts, audios, images, videos, and structure records.
In [17], the authors express document content as n-grams feature-
vectors; the n-grams frequencies vector represents each web page.
Afterwards, they apply supervised methodologies for web page classifi-
cation. In [18], the authors study the influence of different significance
indicators for automatic web pages classification. The indicators are the
title, the headings, the internal metadata, and the main web page text.
They showed that it is possible to obtain the best classification with a
well-tuned linear combination of these four elements. Shen et al. [19]
proposed an approach to classify web pages topics through web page
summarization algorithms. These algorithms aim at extracting the most
relevant features from web pages. By preprocessing web pages with
summarization techniques, they get an improvement in the classifica-
tion accuracy, compared to plain content-based classifiers. In the field
of web content classification, the work in [20] employes Ant Colony
optimization [21] for classification rules discovery. The work proves
that the Ant Colony is a powerful classification tool and produces high
accuracy in the results.

Know and Li in 2003 [22] proposed a web page classifier based on
k-nearest-neighbor (k-NN). In this method, they use HTML tags and
structure features, where different parts of HTML tags have different
weights. Considering two documents, the higher the co-occurrence of
terms between the two, the stronger their relationship is.

De Boer et al. in [23], use visual-based features, such as simple color
and edge histograms to provide an aesthetic classification of web pages.
In [24], the authors propose a visual-based approach, where they clas-
sify web pages into three main categories, namely information pages,
research pages, and personal home pages, using both structural and
visual features. Kovacevic et al. [25] proposed a method based on visual
layout analysis. They represent a web page as a hierarchical structure
called visual adjacency multi-graph in which the nodes represent HTML
objects, and the directed edges reflect spatial relations between objects
on the browser screen. By visual information of the multi-graph, it is
possible to define heuristic rules for recognizing common logical areas
of web pages.

At last, authors in [26] build a supervised classifier that targets 5
sensitive categories (ethnicity, health, political belief, religion, sexual
orientation). They leverage web page contents, comparing the text
against a list of keywords that may identify each category. A naive
Bayes classifier suffices for this simple task.

All the works related to this category rely on features extracted by
directly visiting and rendering the page. It is thus necessary to first
have the complete URL of the page and then to access it to analyze its
content, structure, or visual features, adding computational and time
complexity in the process. Note that active crawling is also becoming
more and more complicated. For instance, the simple landing page of
a website may not reveal the actual content until the user has accepted
the so-called cookie-policy, or performed a login, or entered the inner
page of the website. Our methods are simpler, as they require only to
receive as input the name of the domains users visits when regularly

accessing the web.



Computer Networks 188 (2021) 107865A. Faroughi et al.

𝑐

2.2. Link and URL based approaches

In link-based approaches, features can be pulled out from other
pages related to the pages under analysis with hyperlinks. This ap-
proach aims at supplying additional information for the classification
step. This category of methodologies requires extensive crawling ses-
sions. Typically, these approaches incorporate the creation of links-
graphs. Utard and Furnkranz [27] proposed a method that uses the
information present in hyperlinks towards the page of interest. They
use the region in the neighborhood part of the predecessor document.
These parts can be the anchor text, the anchor text neighborhood, or
the text in a paragraph around the hyperlink. Moreover, they also use
the text on the target web page.

Some previous works focus on URLs and extract features by dividing
the URLs into meaningful portions. Using only URLs, the execution is
faster since there is no need to retrieve and analyze web page content.
Kan and Thi [9] proposed a supervised method based on URLs features.
The proposed method divides the URLs into meaningful tokens. These
tokens constitute the feature set, together with correlated information,
such as the token position in the URL, the token lexical kind, or,
again, information about the token successor and predecessor. The
feature set is the input for a supervised maximum entropy model, a
classical method in text classification. Baykan et al. [28,29] presented
a supervised classification based again on URLs. They split each URL
in tokens, using any punctuation mark as separators, extracting strings,
numbers, or other non-letter characters. The feature set consists of
four different categories: tokens, n-grams derived from tokens, n-grams
directly derived from the URL, and positional information explicitly
encoded in tokens or n-grams. Then they use those features to build a
Support Vector Machine (SVM) [30] and a naive-Bayes classifier. The
work presented in [31] proposed an unsupervised web page classifica-
tion solution based on URLs. Each resulting cluster includes a set of web
pages that are assigned to the same class. Unlike classification methods
that need a training set of labeled pages, the proposed solution builds
several URL patterns representing the different classes of pages on a
website. It is then possible to classify additional pages by matching
their URLs to the patterns. In our work, we consider having access to
the domain name and not the entire URL, as in TLS traffic.

2.3. Traffic based approaches

Jiang et al. [32] is the only work that proposed a method based
on patterns in mobile application access logs. They extracted the logs
from the traffic flow data captured in an ISP core network and tar-
get the classification of domain names into four coarse classes. Then
they extracted the latent vector representation from users’ visiting
sequences, taking inspiration from the Word2Vec model [33]. In this
context, mobile server domains stand for words, while a user visiting
sequence corresponds to a sentence. The resulting vector is the input
for a Support Vector Machine classifier. In our work, we implement
the methodology of Jiang et al. [32] (see Section 4.2) and compare it
with the other proposed approaches. Finally, it is essential to point out
that the authors of [32] perform their evaluation on a limited dataset
filtering only a handful of classes (5) and focusing on the most popular,
by access, domains. Here we explore a much broader set of data and
a finer-grained classification. In this sense, the results in numbers
(e.g., accuracy or precision) reported in [32] are not comparable to
our work.

3. Discussion over the adopted methodologies

In this paper, we want to address the problem of websites domains
classification. We extract three features from the TCP traces: the source
IP, the timestamp, and the domain name. We know that some domains
belong to a category, and we want to build a model to enhance this
3

knowledge. Using the available features, we investigate the problem
over two dimensions. In the first, we consider domain names as strings.
In the second, we consider the temporal evolution of how users move
from one website to another by examining the sequence of domains
they visit inside a time window.

We try different solutions based on machine learning, including
some previously proposed ones for similar problems. Worth to mention
is the analysis of Neural Network performances. More specifically, we
refer to deep learning methodologies that work with sequences of data,
like strings or time sequence. While these off-the-shelf solutions are
easy to execute, they perform reasonably well given the complexity
of the problem and the limitation of getting large amounts of labeled
data. For this, we define more ad-hoc features and methodologies and
compare them in detail.

In the following sections, we will discuss the proposed approaches,
supervised and semi-supervised. In Section 4, we discuss how to extract
relevant attributes from the data collection in use and how to define
appropriate classification methodologies. In Section 5, we examine the
semi-supervised classification approaches. This category of methodolo-
gies is particularly suited for problems in which the classified set of
elements is small with the overall dataset size, and it is insufficient for
building a model. Given the complexity of the task, as discussed before,
we have to use specific features. Furthermore, we show the necessity
of computing specific similarity values for the nodes in the graph.
Finally, we describe a graph pruning technique that allows having
fewer edges, limiting the computational and memory complexity. The
package containing the code for all the used methodology and all the
tuned parameters is available online [16].

4. Supervised classification approaches

In this section, we outline different methodologies for classifying
domain names. We describe only methods based on features obtained
by passive measurement traces. This kind of data allows the extraction
of sequences of domains visited by users. The rising of traffic encryption
(i.e., HTTPS) is nowadays limiting access to more detailed information.
Most notably, a passive sniffer can capture only the timing and flow
information, along with the domain name of the contacted server.

Among the other data, the logs elements include a client IP address
(anonymized in our analysis), 𝑠 ∈ 𝑆; a requested domain name, 𝑑 ∈ 𝐷;
and a timestamp when the request was sent 𝑡 ∈ [0, 𝑇 ]. We are able to
define a category, 𝑐 ∈ 𝐶 for a small subset of domains (e.g., via manual
labeling). Overall, our data has the form of quadruples 𝑇 = {(𝑡, 𝑠, 𝑑, 𝑐)}
where each entry is a request. 𝑇𝑙 = {(𝑡𝑙 , 𝑠𝑙 , 𝑑𝑙 , 𝑐𝑙)} is a labeled subset
of data, with sub-scripts representing if this is the case (labeled data).
Our goal is to create a function 𝐹𝜃 ∶ 𝐷 → 𝐶, from the set of domains
𝐷 to the set of classes 𝐶, whose objective is to accurately uncover 𝑐𝑢
for an unlabeled subset of domains: 𝑇𝑢 = {(𝑡𝑢, 𝑠𝑢, 𝑑𝑢)}. We will define
the function 𝐹𝜃 starting from our labeled data 𝑇𝑙. This function is
parametrized by 𝜃 (e.g., in a logistic regression, 𝜃 are the regression
parameters) and is applied as 𝐹𝜃(𝑑) = 𝑐, where 𝑐 is the predicted class.

4.1. Supervised classification based on domain names

A domain name is a string composed of strings separated by ‘dots’,
i.e., the different domain levels. We consider, for the forthcoming ex-
periments, n-grams as sequences of characters present in all the domain
levels. For instance, in google.com, the 1-grams are {g, o, o, g, l, e, c, o,
m}, whereas the 2-grams (bi-grams) are {go, oo, og, gl, le, co, om}. For
each domain, we extract all its n-grams with 3 ≤ 𝑛 ≤ 𝑘, where k
is a maximum threshold and obtained by parameter tuning. For each
category 𝑐, we count the frequency among domains of each n-gram
𝑔 i.e., 𝑓 (𝑔, 𝑐). This data represents the training features. Then, for an
unlabeled domain name 𝑑𝑢, we compute its n-grams. We will assign the
category 𝑐 with maximum similarity 𝑠𝑖𝑚(𝑑𝑢, 𝑐) between this domain 𝑑
and all classes 𝑐.

̂ = argmax
𝑐∈𝐶

𝑠𝑖𝑚(𝑑𝑢, 𝑐) (1)

We use two different metrics to find the similarity between each

unlabeled domain name and each category.
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4.1.1. Similarity based on TFIDF on n-grams
The first metric we consider is TFIDF [34]. TFIDF is the product

of two statistics, term frequency (TF) and inverse document frequency
(IDF). It is widely used in information retrieval and gives a weighting
scheme for each term [35]. TFIDF reflects how important an n-gram g
is for a category 𝑐 ∈ 𝐶 to the set of all categories in the training model.

erm Frequency (TF) measures the importance of an n-gram in category
. We use the so-called augmented frequency version of TF [36] in order
o prevent a bias towards longer documents, i.e., raw n-gram frequency
ivided by the raw frequency of the most occurring n-gram in the class
. The equation for TF is:

𝐹 (𝑔, 𝑐) = 0.5 + 0.5 ⋅
𝑓 (𝑔, 𝑐)

max𝑔 ′ {𝑓 (𝑔 ′, 𝑐)}
(2)

IDF measures how important an n-gram is in the whole collection
of categories, i.e., whether it is common or rare. If an n-gram is very
common, it has little importance to distinguish among the categories.
Thus, we assign less weight to frequent n-grams, while we scale up the
rare ones. IDF is defined as:

𝐼𝐷𝐹 (𝑔, 𝐶) = log
|𝐶|

|{𝑐 ∈ 𝐶 ∶ 𝑓 (𝑔, 𝑐) > 0}|
(3)

where |𝐶| represents the total number of categories and |{𝑐 ∈ 𝐶 ∶
𝑓 (𝑔, 𝑐) > 0}| is the number of categories where the term 𝑔 appears.
Then the TFIDF is calculated as:

𝑇𝐹𝐼𝐷𝐹 (𝑔, 𝑐, 𝐶) = 𝑇𝐹 (𝑔, 𝑐) ⋅ 𝐼𝐷𝐹 (𝑔, 𝐶) (4)

Given a domain 𝑑 we calculate its similarity to a class 𝑐 as the sum
of TFIDF values 𝑠𝑖𝑚(𝑑, 𝑐) of the n-grams of the domain 𝑑 in a class 𝑐:

𝑠𝑖𝑚(𝑑, 𝑐) =
𝑘
∑

𝑔=1
𝑇𝐹𝐼𝐷𝐹 (𝑔, 𝑐, 𝐶) ⋅ 𝑓 (𝑔, 𝑑) (5)

where 𝑓 (𝑔, 𝑑) is the frequency of the n-gram 𝑔 in the domain name 𝑑
and 𝑘 is the number of unique n-gram in 𝑑. At last, we assign 𝑑 to the
category with the highest similarity.

4.1.2. Similarity based on NFA on n-grams
The second evaluated metric is the Number of False Alarms (NFA)

metric. NFA expresses a similarity measure between a domain and
a class [37]. NFA algorithm employs the Helmholtz principle [38]:
meaningful features and notable events appear as significant deviations
from randomness or noise. For these reasons, humans can perceive the
significance of the characteristics mentioned above. A low value of NFA
connotes a perceptually meaningful event.

Following this approach, we can calculate the meaning of an n-gram
𝑔 for a category 𝑐[37]. Given the sum of frequencies of n-grams in a
class, i.e., 𝐵(𝑐) = ∑

𝑔 𝑓 (𝑔, 𝑐), we define 𝑁(𝑐) as:

𝑁(𝑐) =
∑

𝑐∈𝐶 𝐵(𝑐)
𝐵(𝑐)

(6)

Then we compute 𝑁𝐹𝐴(𝑔, 𝑐):

𝐹𝐴(𝑔, 𝑐) =
(∑

𝑐′∈𝐶 𝑓 (𝑔, 𝑐′)
𝑓 (𝑔, 𝑐)

)

1
𝑁(𝑐)𝑓 (𝑔,𝑐)−1

(7)

If the NFA value is less than one, then the frequency of 𝑔 can be
eflected as a meaningful event since our calculations do not expect it.
hus, n-gram 𝑔 can be considered as a meaningful or significant term

n the category 𝑐. Since the values of NFA can be exponentially large
r small, in order to define a function that computes the meaning of
n n-gram within a class, we use the logarithmic value of NFA [38].
inally, we obtain the distance 𝑀𝑒𝑎𝑛𝑖𝑛𝑔(𝑔, 𝑐) as:

𝑒𝑎𝑛𝑖𝑛𝑔(𝑔, 𝑐) = −
log𝑁𝐹𝐴(𝑔, 𝑐)

𝑓 (𝑔, 𝑐)
(8)

The bigger the meaning score 𝑀𝑒𝑎𝑛𝑖𝑛𝑔(𝑔, 𝑐) of an n-gram 𝑔 in a
lass 𝑐 is, the more significant the n-gram is for that class. Finally, we
4
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ategorize the unlabeled domain 𝑑 by computing the similarity as the
otal meaning value of 𝑑 for the category 𝑐, i.e., 𝑠𝑖𝑚(𝑑, 𝑐):

𝑖𝑚(𝑑, 𝑐) =
𝑘
∑

𝑔=1
𝑀𝑒𝑎𝑛𝑖𝑛𝑔(𝑔, 𝑐) ⋅ 𝑓 (𝑔, 𝑑) (9)

here 𝑓 (𝑔, 𝑑) is the frequency of the n-gram 𝑔 in the domain name 𝑑
nd 𝑘 is the number of unique n-gram in 𝑑.

.2. Supervised classification based on sequences of visited domains

So far, the proposed methods consider only domains in isolation.
e now turn our attention to sequential accesses to domains within
session. We aim at using the context of an unlabeled domain 𝑑𝑢

o help its classification. In Section 6.2, we present a methodology
o extract only explicitly visited websites (called Core). In this way,
e can remove all the domains contacted for advertisements, trackers,
nd other parts of the page, as well as for other applications, system
pdates, etc. The concept is that two (Core) websites that users actively
isit in a sequence have a more significant probability of belonging to
he same class. Indeed, as in [32] and from our observations, users often
isit same-category websites at a short distance of time. In this work,
e consider as a session the sequence of visited domains by a user in
time window. We considered sessions of one hour, but we report the

esults with different time window length in Section 7.3. We implement
he same methodology presented by Jiang et al. [32]. First, we use a

ord2Vec model [33] to represent the session as a vector in a vector
pace. Word embedding is the most widely used text representation
odel. It represents each word with a very low-dimensional vector
ith semantic meaning. Afterwards, we use a supervised classification
ethod on the embedding space to assign categories to domains.

Let 𝑣 = [𝑑𝑖 ∶ 𝑖 = 1, 2,… , 𝑆] be the ordered sequence of domains
hat a user visits in a session, where 𝑑𝑖 is the 𝑖th visited domain, and

is the number of visits. Based on the model proposed by Mikolov
t al. [39], we build the vector space using a multi-layered neural
etwork arranged with the skip-gram model. In the current use case,
he neural network has the job of predicting a target domain given a
et of domains called context domains. The context domains of a target
omain are the set of domains present at the same time in the visiting
equences in the corpus. More formally, the goal of word vectors is to
aximize the average log probability:

1
𝑆

𝑆
∑

𝑡=1

𝑆
∑

𝑠=1,𝑠≠𝑡
log 𝑝(𝑐𝑜𝑛𝑡𝑒𝑥𝑡|𝑑𝑡) (10)

here 𝑆 is the number of domains in each sequence, and 𝑑𝑡 is the
target domain. The context may be either a sequence of co-occurring
domains based on a sliding window or just the domain preceding 𝑑𝑡
n time. In the latter case, we represent the probability 𝑝(𝑑𝑠|𝑑𝑡) using

softmax function 𝑝(𝑑𝑠|𝑑𝑡) = 𝑒𝑥𝑝(𝜈𝑡⋅𝜈𝑠)
∑

𝑡′ 𝑒𝑥𝑝(𝜈𝑡′ ⋅𝜈𝑠)
. Softmax is a function that

returns a vector that describes the probability distribution of potential
assignment. Here, 𝜈𝑠 and 𝜈𝑡 ∈ R𝐾 represent the 𝐾 dimensional vector
pace and ⋅ is the inner product. When the domains 𝑑𝑡 and 𝑑𝑠 frequently
o-occur in a sequential manner, the parameters 𝜈𝑠,𝑡 should have similar
alues, increasing the softmax probability. In order to compute the
arameters, some techniques like hierarchical softmax [40], negative
ampling [41] and sub sampling of frequent words [39] are used. We
efer the reader to [39] for further details.

As a consequence, each domain has a vector representation 𝜈𝑑 ∈
𝐾 . Under those circumstances, we can use the resulting vectors as
lassification features. For supervised classification based on the vector
f domains, we use a support vector machine (SVM) algorithm [30],
s already used in [32]. In our implementation, we generate the rep-
esentation of the domains using FastText [42], an implementation of
ord2Vec, using the default parameters. The default sliding window

s of size 5. Hence, with a session of size 5 (domains) [𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5],
hen using skip-gram, for each of the 5 domains in the session, random
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Fig. 1. An example graph, where only colored nodes are labeled, and the others are
unlabeled. Edges can be built following different criteria. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

words (within the window) are chosen to update the model. That is,
when training, we try the predict 𝑑1 using one other random domain.
This is done iteratively until the model converges. In our dataset, we
point out that only 28% of our sessions have a size greater than 5. Thus
increasing this window size should have a limited effect on our results.

5. Semi-supervised classification approach

The previously described approaches study a traditional supervised
classification problem. When the number of labeled data is small com-
pared to the unlabeled data, sometimes this approach does not obtain
accurate predictions. A solution to overcome this limitation is to use
semi-supervised classification. The intuition is that, in semi-supervised
techniques, the unlabeled data can somehow be useful to improve the
classifier. Here, by using a semi-supervised methodology, we exploit a
few labeled domains and their relationship with the remaining large
amount of unlabeled domains to extend our knowledge.

In our work, we rely on a graph-based approach, proposed in [43],
where domains are vertices, and their similarities define edges and
weights. This algorithm belongs to the class of transductive methods.
This category’s main characteristic is leveraging unlabeled data for
training the method, using a graph data representation. [44,45] The
graph structure enables the propagation of the few available labels
through its network until all the domains in a connected component
are labeled. The graph structure is defined as 𝐺 = (𝑉 ,𝐸), where 𝑉 is
the set of vertices that include both the labeled and unlabeled domains,
and 𝐸 is a set of edges. The graph structure uses distance metrics or
kernel functions like the Gaussian kernel to define the edge weight
between pairs of nodes and represent them by an adjacency matrix
𝑊 . As an example, Fig. 1 illustrates an undirected connected graph in
which colored vertices represent the labeled domains.

Here, we have a vector representation of domains, and we use
the cosine similarity [46] to measure how similar domains are. We
have two representations, one obtained using domain2vec, and the
other using NFA. The first type considers co-occurring domains. The
domain2vec process extracts 100-dimension vectors. With this method-
ology, domains that often appeared together in the same sessions have
similar vector values. The second class of vectors looks at the domain
names. The vectors have 25 elements, each representing the distance
to the SimilarWeb categories, computed using NFA. Similar domains
have similar vector values. As we describe later in the text, in the SSDS
approach, we use the former domain2vec representation; in SSDB, we
use the latter. In SSB, we use both, combining the similarities in the
final weight.

Towards increasing efficiency and robustness against noise, we
extract a sparse weighted subgraph from the fully connected graph.
There are different possible solutions to recover a sparse subgraph.
The most common algorithm is the k-Nearest Neighbor algorithm (k-
NN); it keeps k-nearest neighbor edges, extracted with the use of
similarity functions, for each node. Another viable approach is the 𝜖-
neighborhood graph. This subgraph extraction technique removes all
the data whose pair-wise similarity is smaller than 𝜖 [47].
5

A fundamental assumption of semi-supervised learning problems,
called smoothness, is that nodes close to each other in the network
are likely to have the same labels. Let 𝐷𝑙 = {𝑑1, 𝑑2,… , 𝑑𝑙} be the
set of labeled domains, with |𝐷𝑙| the number of them. Let 𝐷𝑢 =
{𝑑𝑙+1, 𝑑𝑙+2,… , 𝐷𝑙+𝑢} be the unlabeled ones. There are |𝐶| classes, and
each class 𝑐 ∈ 𝐶 comprises a subset of domains in 𝐷𝑙. We define a
matrix 𝑌𝑙 ∈ {0, 1}|𝐶|×|𝐷𝑙 | with 𝑌𝑖𝑗 = 1 if 𝑑𝑗 ∈ 𝐶𝑖. 𝑌𝑙 maps domain 𝐷𝑙
into classes. The training data 𝐷 = 𝐷𝑙 ∪ 𝐷𝑢 produce a weighted graph
𝐺 = (𝐷,𝑊 ), where 𝐷 has 𝑁 = |𝐷𝑙| + |𝐷𝑢| domains, and 𝑊 ∈ R𝑁×𝑁 is
the adjacency matrix.

The prediction is based on assumption of consistency: (1) nearby
points are likely to have the same label (2) points on the same structure
(cluster or a manifold) are likely to have the same label prediction
of labeled domains. To formalize the assumption, we use a classifying
function [48], which is sufficiently smooth for the structure of labeled
and unlabeled domains. The objective function is:

argmin
𝐹
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(11)

where 𝐹 ∈ {0, 1}|𝐶|×𝑁 is the final mapping of domains (labeled and
unlabeled) into classes and D is the diagonal degree matrix given by
D𝑖𝑖 =

∑

𝑗 𝑊𝑖𝑗 .
The objective function has two terms. The first one represents the

smoothness constraint, which expresses the dissimilarity between the
results of the classifying function of nearby nodes. In a nutshell, the
classification outcome should not differ too much when considering
two adjacent elements. The second term refers to the difference be-
tween the output of the classifying function and the initial labeling.
In a few words, the final classification should be compatible with the
ground truth labels. The idea of smoothness constraint can be expressed
using graph Laplacian. The Laplacian matrix is obtained by 𝐿 = D−𝑊
and regularization Laplacian is often used to constrain the labels to be
consistent with the graph structure [44]. A positive weight parameter
𝜇 captures the trade-off between these two terms.

A fundamental step in the semi-supervised approach is the extrac-
tion of the adjacency matrix 𝑊 , which represents the edge weights,
using a meaningful similarity measure. In our work, we define the
weight of the edges in graphs via different similarity functions. We
choose metrics that refer to the functions defined for the supervised
classifications in Section 4. Hereafter, we assign the weights in three
ways: (i) using a similarity function associated with the domain names,
(ii) considering the sequence of visited domains, and, lastly, (iii) com-
bining the distances obtained using these two features. These three
solutions include pruning mechanisms to reduce the number of edges in
graphs, assigning a weight of 0 under a certain threshold. The pruning
is necessary to avoid weak connections and prevent the creation of
complete graphs, computationally intractable when the number of
nodes is large. In the following, we define and describe the three weight
functions for extracting values for 𝑊 .

5.1. Edge weighting with similarity based on the domain names

The first similarity function for edge weighting uses the NFA-based
vectors extracted in Section 4.1. Using the similarity function 𝑠𝑖𝑚(𝑖, 𝑐)
between a domain 𝑖 and a class 𝑐 as a building block, we use cosine
similarity for computing the pairwise domain similarity between the
domains 𝑖 and 𝑗 in the following way:

𝑠𝑖𝑚𝑛𝑎𝑚𝑒(𝑖, 𝑗) =
∑

|𝐶|

𝑘=1 𝑠𝑖𝑚(𝑖, 𝑘) ⋅ 𝑠𝑖𝑚(𝑗, 𝑘)
√

∑

|𝐶|

𝑘=1 𝑠𝑖𝑚(𝑖, 𝑘)
2
√

∑

|𝐶|

𝑘=1 𝑠𝑖𝑚(𝑗, 𝑘)
2

(12)

We generate an edge between 𝑖 and 𝑗 if the resulting similarity
is higher than a threshold 𝜖, with weight equal to the output of
𝑠𝑖𝑚𝑛𝑎𝑚𝑒(𝑖, 𝑗):

𝑊𝑖𝑗 =

{

𝑠𝑖𝑚(𝑑𝑖, 𝑑𝑗 ) if 𝑠𝑖𝑚(𝑖, 𝑗) > 𝜖
(13)
0 otherwise
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In order to choose the best threshold, tune parameter 𝜖 is done by
erforming 5-fold cross-validation with different 𝜖 values in the range
0.9, 0.99] (using steps of 0.005). The selected value is the one with the
est performance in our cross-validation procedure. Moreover, for the
est final algorithm, we also employed a dedicated test set. We refer to
ection 7 for the definition of the parameter values.

.2. Edge weighting with similarity-based on domain sequences

The second way to define the weights of the edges uses the vectors
xtracted from the sequences of visited domains described in 4.2. Recall
hat each domain in the word vector model is represented as a 𝜈𝑑 ∈ R𝐾

vector. With such vectors, we can now compute a pairwise similarity
matrix for every pair of domains. Here, we again make use of the cosine
similarity based on multi-dimensional vectors:

𝑠𝑖𝑚𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝑖, 𝑗) =
∑𝐾

𝑡=1 𝜈𝑖𝑡𝜈𝑗𝑡
√

∑𝐾
𝑡=1 𝜈

2
𝑖𝑡

√

∑𝐾
𝑡=1 𝜈

2
𝑗𝑡

(14)

Afterwards, we create an edge between two domains according to
Eq. (13). We use 5-fold cross-validation to tune the parameter 𝜖 with
ifferent values in the range [0.4, 0.8] (using steps of 0.01). We report
n Table A.3 in Appendix A the optimal value of 𝜖 that has been found.

5.3. Edge weighting combining metrics using domain names and domain
sequences

The third and last edge weighting function considers the conjunct
impact of both features, i.e., domain names and sequence of visited
domains. In this way, we can exploit both the concepts of similarity, en-
riching edges information. To reach this goal, we compute the average
similarities of the Eqs. (12) and (14):

𝑠𝑖𝑚𝑛𝑎𝑚𝑒&𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 =
𝑠𝑖𝑚𝑛𝑎𝑚𝑒 + 𝑠𝑖𝑚𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

2
(15)

Then, based on the resulting similarity, we again use Eq. (13) to
assign the weights (see Table A.3 in Appendix A for the adopted 𝜖).

In Fig. 2, we show the whole flow used for applying this semi-
supervised method.

6. Dataset collection, preparation and characterization

6.1. Network traffic collection

Our analysis relies on a dataset collected in our university campus in
Turin (Italy). In the dataset, users’ terminals (usually PCs) are directly
connected to the Internet via campus network (wired Ethernet) and
uniquely identified by a statically assigned IP address associated with
one and only one terminal. In other setups, like, for example, in
the presence of a NAT, the users should be identified using different
strategies as proposed in the literature [49]. However, this is outside
the scope of this work. Moreover, often clients are contacting from their
terminal also domains outside of the browser session (e.g., software
updates or other background applications). The Core domain approach
presented in Section 6.2 helps in removing such domains.

We rely on Tstat [50] to collect data. Tstat monitors each TCP flow,
exposing detailed information. Here, we are interested in retrieving the
domain name of the server being contacted. Tstat implements three
techniques to get it. For HTTP flows, the Host: header is parsed
directly from HTTP requests. In the case of HTTPS/TLS, Tstat DPI
module extracts the Server Name Indication (SNI) field in the Client
Hello message. SNI is a TLS extension by which the client indicates
the server domain that it is trying to contact. At last, Tstat reports the
domain name clients resolved via DNS queries prior to flows [51]. We
combine these three mechanisms to label each TCP flow with the server
name, giving higher priority to Host and SNI fields where more than
one is present.
6

In this work, for each TCP flow, we consider: (i) the anonymized
client IP address as terminal identifier 𝑠, (ii) the starting time of the
flow 𝑡 and (iii) the server domain name 𝑑 - as retrieved via HTTP, TLS,
or DNS protocols.

Our dataset contains the traffic of approximately 2500 terminals,
collected at our university Campus in Torino in 40 days in 2017. The
dataset includes 4691 million flows and 404 thousand unique domains.
For our train/validation/test set definition, we extract the domains
visited in one day by the users (see Section 6.4).

Information about user behavior is sensitive, and the collection
of these data might be privacy-invasive [52]. To reduce as much as
possible to possible privacy violations, we followed the best practice
of limiting the data collection to only the necessary information for
the experiment. Both the data collection process and the collected
data have been discussed, reviewed, and approved by the ethical
board of our University. In collaboration with our campus network
administrators, we took all possible actions to protect the leakages of
private information from users. In particular, Tstat was installed and
configured (i) to process packets in real-time, (ii) to anonymize the IP
addresses of clients using an irreversible hash function, whose key was
selected by the network administrators, and (iii) to save only flow level
logs with the needed information.

6.2. Identification of core domains

Here we present a methodology to extract only explicitly visited
websites. This approach is instrumental in removing all the domains
contacted for advertisements, trackers, and other content of the page
and traffic of other applications, system updates, and other elements
running in the background. Indeed, when visiting a web page, the
browser application first downloads the main HTML document and
then fetches all the page objects (images, scripts, advertisements,
and other content). These objects often lie on external servers that
have different domains [53]. We call Core domain a domain ini-
ially contacted to download the main HTML document of a page.
ore domains are essential since users intentionally visit them, like
ww.facebook.com and en.wikipedia.org. We call Support
domains those domains automatically contacted by visiting a Core do-
main, or by background applications, like static.10.fbcdn.net
and dl-client.dropbox.com. Support domains do not contain
useful information about user intention. Hence, we build on our previ-
ous methodology [13,54] to identify and consider only Core domains.
Here we briefly report the Core domain extraction methodology.

We build a labeled dataset that we use for training and testing. We
consider 500 Core and 500 Support domains, a balanced labeled dataset
that we make publicly available [16]. We visit each domain using a
headless browser and extract an extensive list of features guided by
domain knowledge. Features include the length and the content type
of the main HTML document (if present); the number of objects of the
page and domains contacted by the browser to fetch all objects; HTTP
response code (e.g., 2xx, 3xx and 4xx); and whether the browser has
been redirected to an external domain. We then let the classifier choose
the ones that better allow it to separate Core and Support domains.
We solve the classification problem using a decision tree classifier. The
final model results in a simple, efficient, and descriptive tree which
reads as it follows: a domain is Core if (a) the main HTML document
size is bigger than 3357B and (b) the browser is not redirected to an
external domain, i.e., the HTTP response code of the website homepage
is not 3xx or, if it is, the homepage is still redirected to another page on
the same domain. Intuitively, support domains typically lack real home
pages. When directly contacted, the server reply with short error mes-
sages. In some cases, Support domains redirect visitors to the service
home page (e.g., fbcdn.net redirects on www.facebook.com).
Despite its simplicity, overall accuracy is higher than 96% when tested
against 1000 labeled domains. For more details, refer to [13].
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Fig. 2. Employed schema for semi-supervised method based on both the domain name and the sequence of visited domains.
Fig. 3. Distribution of popularity in terms of visits of labeled domains in each of the 25 classes.
Fig. 4. Distribution of unique labeled domains in each of the 25 classes.
Considering the dataset obtained in Section 6.1, we identify 161 333
unique Core domains (14 712 for the single day labeled and used for
training/validation/testing). This dataset of Core domains is released to
the public [16]. IP addresses are obfuscated, and the class is provided,
where available.

6.3. SimilarWeb dataset with domain category

To obtain Core domain classes, we conducted several tests using
different categorization systems. Note indeed that there is not a unique
taxonomy, and each service provides a different definition of classes
and offers a different coverage [14]. Here, we rely on SimilarWeb,2

a website that provides web analytics services. It results in the most
reliable and offers good coverage of domains, even for Italian websites.
As a result of several manual inspections, SimilarWeb performed con-

2 https://www.similarweb.com/
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sistently better than other publicly available datasets to categorize our
study country domains.

Among the other information, they offer an extensive database of
categorization of second-level + top-level domains. We use this as our
ground truth. The total number of categories is 25. This number is sig-
nificant, and many classes may have some overlap. For example, many
domains could be assigned to both ‘‘Internet and Telecom’’ and ‘‘Com-
puter and Electronics’’. We could have merged multiple categories, but
we decided to keep the original categorization of SimilarWeb as ground
truth to make our results easily comparable by other scientists.

We intersect our dataset of Core domains obtained in Section 6.2
with the dataset of labeled domains of SimilarWeb referring to 2017.
We obtain 2178 labeled domains out of 14 712 unique Core domains
used for training/validation/testing (around 14%). Hence, SimilarWeb
contains only a small fraction of the domains for our trace in Italy. Once
more, the limited coverage of available classification services motivates
the need for automatic means of solving the classification problem.

https://www.similarweb.com/
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Fig. 5. Result of the evaluation metrics.
For comparison, we also checked the DMOZ labeled dataset.3 Be-
sides having fewer classes than SimilarWeb (15), it covers only 8% of
domains in our data.4

Figs. 3 and 4 show a characterization of the categories in the
dataset. Fig. 3 depicts the categories’ popularity on the overall set,
measured as the total number of visits for each domain. The figure
helps to understand which are the most popular categories. ‘‘Internet
and Telecom’’ and ‘‘Computer and Electronics’’ cover more than 60%
of the overall traffic. The strong prevalence of tech-related categories is
not surprising since the dataset collects users’ activity on our campus,
where the research on these topics is predominant.

Fig. 4 outlines the distribution of unique domains over the different
categories. The results show a different distribution than Fig. 3. Here
‘‘Internet and Telecom’’ and ‘‘Computer and Electronics’’ now include
less than 20% of the unique domains, and ‘‘News and Media’’ results

3 https://www.kaggle.com/shawon10/url-classification-dataset-dmoz.
DMOZ was abandoned in 2017 by Mozilla, and now accessible under
Curlie.org.

4 We also tried to merge the two services, but desisted due to the difficulty
in matching the categories and the different criteria they use to assign a
website to a class.
8

to be the category with more distinct elements, suggesting a broader
heterogeneity in the fruition of this kind of content.

6.4. Preparation of training, validation, and testing sets

We consistently use for all the methods the same approach. We
split the labeled data into train, validation, and test data. We use
training and validation sets for parameter tuning for each method,
using 5-fold cross-validation. The 5-fold cross-validation is performed
for both the supervised and semi-supervised methods, with the same
set of labeled elements. For the semi-supervised method, we build the
graph with all the Core domains, of which only a fraction is labeled
(see Section 6.3). The ones that are not labeled will eventually obtain
an estimated label after performing the method, but they cannot be
considered for evaluating the performance. Only the labeled ones are
taken into consideration, following the same 5-fold cross-validation
procedure as for the supervised ones.

The test set is a separate and independent sample of data that we
use to provide an unbiased evaluation of the related final model. It is
used only to obtain an independent evaluation of the final algorithm,
and the result on the test set cannot lead to changes in the choice of
the algorithm or the parameters since we will then have no way to

https://www.kaggle.com/shawon10/url-classification-dataset-dmoz
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Fig. 6. Scatter plot of F-Measure values obtained with the ‘‘Semi-supervised both’’
approach and the size of the considered categories in terms of unique domains. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

measure the true performance. Hence, we can use it only on the best
algorithm [55].

To obtain the test set, we consider 20% of the original (randomized)
data. The remaining 80% is the dataset used for our 5-fold cross-
validation. For each fold, we train each model on 80% on this set
and validate on the remaining 20%. We select the algorithm with the
best performance on the cross-validation step, and finally, verify its
performance on the test set to indicate how it will perform in practice.

7. Experimental results

In this section, we report the experimental evaluation of the consid-
ered methodologies. Results can be reproduced by using the code and
dataset provided in [16].

7.1. Evaluation metrics and parameters selection

Overall, we have six different approaches to compare. In addition
to our six classifiers, we also consider two naive classifiers as a base-
line. The first one assigns all domains to the most frequent category,
i.e., ‘‘News and media’’ as in Fig. 4. We call it ‘‘Naive-MostFrequent’’.
The second one assigns one category uniformly at random. We call it
‘‘Naive-Uniform’’.

As said, we perform, for each solution, 5-fold cross-validation on
the training set. The cross-validation generates new train and val-
idation datasets with different combinations of elements. For each
execution, we consider 80% of the trained data for training and 20%
for validation. This process allows us to obtain better performance
estimations and better tune the algorithms by combining different pa-
rameter values. Regarding the latter, we report the selected parameters
in Table A.3 in the Appendix A. We evaluate the performance of each
solution using standard classification metrics. For each validation fold,
we obtain the confusion matrix, a numerical representation of how the
classifier predicted the instances of each label. From it, we compute the
Accuracy, i.e., the fraction of correct predictions. Moreover, we com-
pute separately for each class the Precision, Recall, and F-Measure [55],
offering a detailed analysis of the results. Furthermore, we compute the
average of Precision and Recall over the different classes (weighting all
classes equally), called macro-averages. Finally, the macro-average for
F-Measure is computed as the harmonic mean of the macro-average of
Precision and Recall.

Given a labeled instance 𝑥 and a list 𝜏𝑥 ranking its confidence of
to belong to the different categories, the Position Error (PE) [56],

s a measure of the deviation of 𝑥 correct label position (𝜆𝑥) from the
op-rank in the 𝜏 list. For example, if the actual label is in the first
9

𝑥

osition in 𝜏𝑥, then the error is 0. The maximum error is 𝑚 − 1, where
𝑚 is the number of classes. The Normalized Position Error (NPE) over
the number of classes is defined as:

𝑁𝑃𝐸(𝜏𝑥, 𝜆𝑥) =
𝜏𝑥(𝜆𝑥) − 1
𝑚 − 1

∈ {0, 1∕(𝑚 − 1),… , 1} (16)

NPE allows us to evaluate how off is the classification from the correct
class. This is a softer metric compared to the ones defined over the
confusion matrix, which only consider if a decision is correct or wrong.
For example, if the second (last) most probable class is the correct one,
we have a PE equal to 1 (24, respectively), even if the decision is wrong.

7.2. Overall and per class results

Table 1 depicts the overall results, obtained with a 5-fold cross-
validation process. Observe in general how the naive classifiers perform
poorly. This outcome is predictable; having 25 classes, and assigning
a domain to a random class or the most popular, results with high
probability in a wrong choice. The Naive-MostFrequent has higher
accuracy (0.133, equal to the most common frequency as in Fig. 3) than
Naive-Uniform (0.033). However, the former is deterministically wrong
in 24 out of 25 classes resulting in poor average Precision, Recall, and
F-Measure.

Moving to Machine learning approaches, we recognize how us-
ing domain name structures improves performance. Measuring the
similarity with NFA performs better than TFIDF, topping to 0.410 ac-
curacy. When considering just the domain sequence (‘‘SVM-Supervised-
DomainsSequence’’), we obtain similar performance. Worth to mention,
we also tried an approach based on LSTM. We focused on domain
names, using character-level models. A character-level model reads
each word as an ordered series of characters. The final prediction tells
us to which category the domain name belongs. For this aim, we used
LSTM as implemented in Keras [57]. The obtained accuracy for LSTM
is equal to 0.416. Even if LSTM performance is similar to that of NFA,
with the latter, we can implement the similarity metric used in the
(better) semi-supervised methods.

Focusing on semi-supervised approaches instead, we can notice a
further improvement in the classification. The outcome results correctly
in 47% and 44% of the cases when using edge weights based only
on domain names or domain sequences. When coupling the informa-
tion bought by both the domain name and the sequence, we observe
a significant improvement, reaching overall accuracy of more than
52%. Overall, all semi-supervised methods improve the performance
of supervised classification.

The same behavior is registered analyzing macro-average scores,
that help in summarizing the per-class classification results. In this case,
as well, the ranking of the methodologies is unchanged. Overall, this
outcome shows the better capability of the Semi-supervised techniques
in predicting the categories.

Despite the increasing complexity of the classifier, the overall results
are still far from a perfect categorization. This outcome is due to the
heterogeneity of the dataset, a considerable number of classes, and
limited information. Recall, indeed, that we rely just on the information
offered by the domain name and sequence of visits.

At last, the definition of a category for a website is, per se, a complex
problem. By manually checking some labeled domains of SimilarWeb,
we found some domains with misleading labels. This occurrence further
complicates the engineering of an automatic model. By looking at the
NPE, we observe that the correct class usually lies in the top-most
positions in the returned similarity hierarchy. For instance, the NPE of
the best classifier (‘‘SemiSupervised-both’’) is 0.093, i.e., on average,
the correct class is found in the top-2 categories (obtained as NPE
times the number of categories). The NPE outcome is instrumental for
supporting the classification of a domain, restricting the choice among
a few options.

Finally, in Table 2 we report the result of the best configuration
(i.e., ‘‘SemiSupervised-both’’) on the test set. As explained in Section 6,
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Fig. 7. Performance results changing number of categories, percentage of used elements and time window used for the session.
Table 1
Performance of the different classifiers obtained on the 5-fold cross validation set.

Method Accuracy 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑐𝑟𝑜 𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑎𝑐𝑟𝑜 NPE

TFIDF-Supervised-DomainsName 0.359 0.342 0.358 0.313 0.181
NFA-Supervised-DomainsName 0.410 0.414 0.331 0.348 0.121
SVM-Supervised-DomainsSequence [32] 0.404 0.335 0.367 0.334 0.135
SSDN-SemiSupervised-DomainsName 0.471 0.486 0.390 0.404 0.112
SSDS-SemiSupervised-DomainsSequence 0.441 0.390 0.344 0.344 0.109
SSB-SemiSupervised-both 0.522 0.528 0.456 0.465 0.089
Naive-Most-Frequent 0.133 0.005 0.040 0.008 –
Naive-Uniform 0.033 0.064 0.063 0.061 –
Table 2
Performance obtained for the best tuned algorithm on the test dataset.

Method Accuracy 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑐𝑟𝑜 𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑎𝑐𝑟𝑜 NPE

SemiSupervised-both 0.562 0.503 0.474 0.465 0.085

the test set is used only to obtain an independent estimate of the
performance of the chosen algorithm, and it cannot be used to compare
different methods [55]. The test set results align with those in the 5-fold
cross-validation set, being even slightly better on the final test set. This
shows the fact that the semi-supervised method will work well, even
with unseen data.

We now move to the detailed description of the results per class.
The following figures report the different evaluation metric results. The
categories sequence follows the distribution of unique labeled domains
reported in Fig. 4 in descending order.

Fig. 5(a) shows the obtained Precision for each domain category,
considering the six methodologies. The semi-supervised approaches
produce the best results. Analyzing Precision among the classes, we
observe promising values for ‘‘heterogeneous’’ categories, in terms of
domain distributions, and for the ‘‘homogeneous’’ ones, with all the
considered solutions. For the first group, worth to mention are ‘‘Career
10

and Education’’, and ‘‘Computer and Electronics’’, while for the second
‘‘Travel’’, and ‘‘Reference’’, (i.e., subscription-based portals for scientific
research). This outcome may suggest that these categories are peculiar
both in the domain structure and in terms of user navigation targets,
distinguishing them from the others. On the other hand, classes like
‘‘Recreation and Hobbies’’, ‘‘Books and Literature’’, and ‘‘People and
Society’’, which more likely cover a large variety of topics, are more
challenging to model and create a more significant number of False
Positives.

Fig. 5(b) shows the Recall measure results. These outcomes mostly
confirm our previous considerations. It is worth to remark the groups
with worse values in Recall measurements. In particular, ‘‘Recreation
and Hobbies’’, ‘‘People and Society’’, and ‘‘Books and Literature’’ con-
firm to have a reduced capability of attracting their actual elements.
Again, a low distinctiveness of these categories may play an essential
role in the model generation, and so in final results.

Finally, Figs. 6 and 5(c) wrap up the aforementioned findings, by
showing the F-Measure values. The semi-supervised combined method-
ology has, in almost all the categories, the best performances, con-
firming the results depicted in Table 1. Fig. 6 details the results of
F-Measure for the semi-supervised combined methodology (the same
plots for all the analyzed methods are reported in Appendix B). It
correlates the F-measure obtained for each category using a specific

classifier (x-axis), with the size of the category in unique domains
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Table A.3
Employed classification methodologies and their parameters.

Method Parameters

TFIDF-Supervised-DomainsName n-grams in [3 − 9]

NFA-Supervised-DomainsName n-grams in [3 − 5]

SVM-Supervised-DomainsSequence [32] skip-gram, dimension = 100, windows = 5
SVM with linear kernel

SSDN-SemiSupervised-DomainsName 𝜖𝑁 = 0.98 , n-grams in [3 − 5]

SSDS-SemiSupervised-DomainsSequence skip-gram, dimension = 100, windows = 5
𝜖𝑁 = 0.985, 𝜖𝑆 = 0.47

SSB-SemiSupervised-both skip-gram, dimension = 100, windows = 5
𝜖𝑁 = 0.985, 𝜖𝑆 = 0.5, n-grams in [3 − 6]

LSTM-Supervised-DomainsName embedding layer: size 64 LSTM layer: 128
memory units dense output layer: 25 neurons
activation function: softmax Loss function:
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 − 𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦 optimizer: 𝐴𝑑𝑎𝑚

Naive-Most-Frequent –

Naive-Uniform –
(y-axis). The varying color and radius of the points are directly pro-
portional to the size of each class. The dashed purple vertical line
represents the macro F-Measure obtained with the Naive-Uniform algo-
rithm. The dashed dark blue vertical line instead depicts the SSB macro
F-Measure. The Figure shows that we obtain good prediction results
for the most prominent classes and categories with a small number of
elements, i.e., not prevalent in our observation dataset. This outcome
suggests a promising behavior of the classifier in the ability to classify
both prominent and underrepresented classes accurately. Comparing
this Figure with Table 1, we can again appreciate how this classifier
works better than simple naive approaches that predict well the most
represented classes. An exception is the category ‘‘Home and Garden’’
for which the F-Measure score is zero. Inspecting the root cause for this
outcome, we can deduce that the very low number of domains for that
class and the difficulty of finding related domains in the same session,
since other similar web pages are categorized differently, negatively
influence the performance.

In general, the proposed approach shows encouraging results. The
categories that are less capable of producing reliable predictions are
also more difficult to classify for all the other methods, suggesting an
intrinsic complexity of the data.

7.3. Impact of categories, number of samples and time window duration

Here we discuss the sensitivity of the tuned SemiSupervised-both
(SBB) method with respect to different parameters. In particular, we
analyze accuracy and macro F-Measure with respect to: (i) the dif-
ferent number of categories, (ii) different percentage of samples, and
(iii) different session length. Again, we use a 5-fold cross-validation
approach.

Fig. 7(a) shows the impact of the number of categories when
considering the K most common categories according to our dataset 4.
Fig. 7(b) instead consider a random choice of K categories with 10 dif-
ferent runs. Curves represent the average over the 5-fold performance
of accuracy and macro F-Measure. For the random category selection
cases, the area represents the standard deviation on 10 independent
runs around the average. The last point reports the single result on
all 25 categories. As expected, the performance (both accuracy and
macro average F-Measure) tends to decrease with the increase of K.
The more categories we consider, the harder the classification problem
becomes. Restricting to the most common 𝐾 categories impacts more
performance than a random choice of 𝐾 categories. This is likely due
to the fact that the two most popular classes, ‘‘Internet and Teleco’’
and‘‘Computer and Electronic’’ may have some overlap and are harder
to distinguish (as discussed in Section 6.3).
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Fig. 7(c) reports the learning curve when all categories are consid-
ered, but only a percentage of flows is used for training. Reducing the
training set size reduces performance. Interestingly, with about 60%–
70% of training, the learning curve already shows signs of saturation.
As expected, the results with 100% samples are a bit higher because
we tuned the parameters on this exact case (Section 7.1).

Finally, Fig. 7(d) reports the sensitivity with respect to the time
window duration to consider co-occurring domains. We hypothesize
that users visit similar websites in the same time-window. Here, we
consider time windows different from 1 h, reducing it to 15 min and
30 min, and increasing it to 6, 12, and 24 h. Here we observe a smaller
impact on the results. Widening the time window to more than one
hour slightly reduces the performance. From the literature, we know
that users browse continuously in sessions that are usually shorter than
1 h (about 85% of them, according to [53]). Hence there are few
sessions longer than one hour that can provide added value for the
analysis. In addition, a too-large session duration can forcibly cause
the joining of several independent sessions. Therefore we are likely
aggregating sessions of uncorrelated content (e.g., considering 12 h, we
might aggregate a session in the morning with one in the evening, with
likely independent topics).

Similarly, reducing the session duration reduces performance. Co-
occurring domains about the same topic usually appear very close in
time, and hence the performance is still good with time windows of
15 min. However, the results show that a 15-minutes time window is
not enough to capture the effect of co-occurring domains.

8. Conclusions

In this paper, we proposed a comprehensive evaluation of classi-
fication methodologies for website domain name classification from
a network observer’s perspective. We considered the main category
of websites as classes, and we relied on the category labels provided
by the SimilarWeb dataset. We analyzed algorithms that make use of
information about the lexical structure of the domains and the co-
occurrence of domains in users’ sessions, not inspecting web pages
content. We created different representations of the data to explore
different solutions and models.

We considered methodologies based on the similarity in terms of
n-grams extracted from the domain names, using TFIDF and NFA. We
tested a linear SVM classifier over data vectors generated by FastText.
Furthermore, we proposed semi-supervised solutions to incorporate in
the classifier aspects not strictly related to the labeled data. Those semi-
supervised methodologies leverage graphs. The graph nodes are the

domains; the weighted edges represent their similarity. We expressed
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Fig. B.8. Scatter plots of F-Measure values and the size of the considered categories in terms of unique domains, for the considered classifiers. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
the similarity between n-grams, looking at domains co-occurrence in
sessions, and as a combination of both. The latter implementation is
the one that offers the best performance.

There are still some limitations in our work that we can address
in the future. First of all, the nature of the traces demarcates the
analysis to the collected domains, excluding in-depth analysis regarding
other countries web traffic. The use of SimilarWeb, as discussed in the
paper, adds a specific viewpoint to the categorization. Future work
could include collecting new traces and comparing the results with
other domains classification sources. This work does not contemplate
the use of active crawling for the analysis. This choice is justified
by the difficulty of selecting a specific page, content, and how the
website reacts to active crawling. However, in the future, it could be
interesting to focus on crawling-based techniques and understand how
they differ from our approach, weighting and merging advantages and
disadvantages.

The results show the complexity of the website topic classification
task. The lack of an exhaustive classification of domains calls for
12
ingenuity in building semi-supervised solutions. However, the limited
but readily available information provided by passive network traffic
traces shows that a good classification is possible. To foster studies, we
make available the code and data [16] we used in this paper, as a guide
for future work exploring passive flow level data for the classification
problem.
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Appendix A. Parameter configurations for the classification
methodologies

Table A.3 wraps up the parameters selected for the different
methodologies explored in the paper. The choice of the resulting values
results from the 10-fold cross-validation tuning process or our domain
knowledge.

Appendix B. F-measure distribution over the 25 SimilarWeb cate-
gories, for the analyzed algorithms

The scatter plots in Fig. B.8 report the F-Measure results for the
considered classifiers, correlating them with the size of the categories in
terms of unique domains. Fig. B.8(a) represents the TF–IDF approach,
Fig. B.8(b) reports NFA, Fig. B.8(c) shows SVM results, Fig. B.8(d) and
Fig. B.8(e) refer to SSDN and SSDS respectively. Finally, Fig. B.8(f)
reports our reference algorithm SSB.

The plots show the F-Measure values on the 𝑥-axis and, on the 𝑦-
axis, the number of unique domains per category. All the plots have
an 𝑥-axis range going from 0.0 to 1.0 to facilitate comparability.
Furthermore, there are two dashed vertical lines. The purple one shows
the macro F-Measure score for the Naive-Uniform approach. The dark
blue vertical line represents the macro F-Measure value for the depicted
algorithm. Starting from the similarities, it is noticeable how all the
algorithms struggle to classify rare categories correctly. In particular,
‘‘Home and Garden’’, ‘‘Books and Literature’’, and ‘‘People and Society’’
seem to be the classes that are the most difficult to predict. The TF–
IDF method, in Fig. B.8(a), have all the F-Measure scores in the range
[0.0, 0.5]. NFA does a little bit better, especially for ‘‘Travel’’, ‘‘Career
and Education’’, ‘‘Law and Government’’, and ‘‘Internet and Telecom’’.
The range is [0.0, 0.6]. Fig. B.8(c) shows a behavior similar to NFA,
but on different categories, namely ‘‘Autos and Vehicles’’, ‘‘Adult’’,
and ‘‘Computer and Electronics’’. Interesting is the result for ‘‘Adult’’,
that had poor scores with TF–IDF and NFA. SSDS and SSDN achieve
better results. However, SSB outperforms the other techniques, with
F-Measure scores shifted towards higher values.
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