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Executive Summary  

 

Deliverable 4.2 describes the final design of tools devoted to improving data management. It also 

delivers the preliminary version of the software implementation of the relevant tools, such as the Data 

Aggregation (DA), the Data Portability Control (DPC), the Data Provenance (DP), the User Profiling 

System (UPS) and the Quantified Self (QS) dashboard. The source code is available on Gitlab, under 

the "PIMCity/Tools for improved data management (WP4)" path. 

 

This document is part of the PIMCity Project, funded from the Horizon 2020 Program (ICT-13-2018-

2019) under Grant Agreement number 871370. The technical decisions and design choices have been 

carefully discussed in plenary meetings as well as specific meetings of WP4 members. Based on these 

decisions, the partner responsible for the development of each tool has taken care of complete the 

design and initial implementation description which has been subject to reviews by other members 

of the WP4. The result of this process is presented in this document. 
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1. Introduction 

Data management has been considered in different contexts, and especially in the online world, in 
an effort to empower data producers (in our case, end-users) to manage the data they produce 
and/or collect. For online users, nowadays, data management typically means front-end User 
Interfaces that are connected to back-end systems allowing them to query such systems for some 
visuals of the user data, and gain insights on the data collected. However, such systems rarely 
extend basic functionalities to the end-user, including modification or deletion of data, or allowing 
them to port their data to another system. Furthermore, the end-users typically do not have any 
knowledge extraction tools at their disposal, for mining / aggregating their own data across different 
dimensions. Additionally, if the system collected some data of the user, they could probably share 
that data with multiple collaborating 3rd parties, and the user has no way of knowing who accessed 
their data, how many times, etc. 

 

In this context, WP4 aims to provide both Personal Information Management Systems (PIMS) 
companies and non-PIMS companies with the necessary tools to ingest and aggregate data in a 
secure and privacy-preserving way, while offering to the user’s data portability and data verification 
features.  

 

Therefore, the target audiences of these tools are: 

1. Existing PIMS willing to improve their products and achieve compliance with the GDPR and 
other legislative frameworks 

2. Generic non-PIMS companies interested in integrating specific data management 
components to improve their products 

3. Direct end users who will be provided with a comprehensive set of tools to visualize, manage, 
validate, track and export their data, and finally 

4. Advertising companies, which will be provided with more accurate and updated datasets for 
better audience targeting. 
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2. Deliverable Objectives 

The goal of the deliverable D4.2 is to present the detailed design of the tools that will be built in Work 
Package 4 (WP4) and aim to improve data management in the PIMCity project. 

 

The WP4 includes five separate tools: 

 

1. Data Aggregation (DA): This module will provide the tools for the data owners to prepare, 
anonymize and aggregate their data in order to be able to share them in a privacy-preserving 
way. This module is implemented under task T4.1. 

 

2. Data Portability Control (DPC): The purpose of this tool is to allow users to migrate their 
data to new platforms, in a privacy-preserving fashion. More specifically, it will provide 
methods for extracting data from one PIMS, process it by filtering out sensitive information 
and outport it into other PIMS systems. This module is implemented under task T4.2. 

 

3. Data Provenance (DP): This module provides Data Provenance capabilities to the 
EasyPIMS platform. Its goal is to provide data provenance about the data uploaded by the 
users in the Personal Data Safe (P-DS) to the Data Trading Engine (D-TE) component. In 
order to complete data orders’ fulfilment, the D-TE goes through the Data Provenance (DP) 
module to watermark datasets. The DP module is implemented under task T4.3. 

 

4. User Profiling System (UPS): This module is the first component of the Data Knowledge 
Extraction (DKE) system. It is able to automatically generate a profile of the user, while 
considering their browsing patterns. The profile will indicate the interests of the user in each 
of the categories defined by the IAB. This module is implemented under task T4.4. 

 

5. Quantified Self (QS): The purpose of the Quantified-self dashboard is to present to the user 
an analysis of their behavior based on the data available, especially related to their location. 
Through comparing their data with other users’ aggregated data, the user will be able to 
better understand not only their behavior in relation to other similar users, but also to see the 
benefits of sharing data in the EasyPIMS setting and the value of his/her data. This module 
is implemented under task T4.4. 

 

We use as reference the Deliverable D1.1, in which we defined the requirements of the modules 
included in the WP4, whose design is described in the next sections. For this reason, we refer to 
Deliverable 1.1 for a broader description of the PIMCity project, the other PDK modules and the 
EasyPIMS architecture. D4.2 was built in coordination with the other technical Work Packages (i.e., 
WP2 and WP3) and their corresponding deliverables D2.2 and D3.3. 
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3. Data Aggregation 

3.1. Tool/Module Objective 

The Data Aggregation (DA) tool enables data owners (for example an Internet Service Provider -ISP 
that hold a bulk of their users’ data) to perform two important processes on their data: aggregation 
and anonymization. Such processes enable data owners to share these data in a privacy-preserving 
way. The DA tool resides on the data owner’s side and its input is the raw data that is available 
through the initial sources (telco data, sensor data, etc.) and it is transformed in a predefined schema 
/ metadata model. The user (data owner) is responsible for preparing the data for processing (i.e., 
export from their initial source (internal database), clean them if needed, etc.). Afterwards, through 
the module, the user is able to choose the subset of the data to be aggregated / anonymized and 
set the related algorithmic parameters (for aggregation and anonymization). The output is the 
processed (aggregated / anonymized) data that can be exported to the PIMCity marketplace through 
an API that the module provides. The data resides on the data owner side and the interested party 
is able to retrieve them through this API. 

 

This is achieved through designing and implementing the data aggregation and anonymization 
pipelines in a generic way that allows different types of data to be processed. The tool has been 
tested on real datasets provided by TID and are mainly related to the end-user’s mobility (e.g., 
location, travelling distances etc.). The user (the data owner) is able to select a number of parameters 
and apply aggregation and anonymization methods and check their effectiveness (achieved 
anonymization) in a simple user interface. This interface will be a simple web interface with options 
to visualize the processed data, in the form of tables and graphs using also basic controls over them. 

  

The outcome of this task includes the metamodels, the flow and the set of properties of the data to 
be exported, as well as the functions that are available and can be applied to the data to allow 
aggregation in a privacy-preserving way. 

 

It should be noted that the anonymization techniques that are to be developed in this module regard 
the data owners in order to be able to share their data and is different from the implementation of 
the respecting anonymization algorithms of the P-PPA module described in D2.1. While this is a 
parallel implementation, depending on the nature of the data at hand for the testing and evaluation 
of our modules, both implementations will be considered. 

 

3.2. Background and State of the Art 

Data aggregation techniques are used to bring together relevant pieces of information and provide 
a high-level overview of an entity in a scalable, efficient and reliable manner. However, the design 
and evaluation of such aggregation algorithms have not received the same level of attention that 
other basic operators, such as joins, have received in the literature. 

 

The nature and purpose of existing aggregation algorithms/techniques are also platform dependent 
in some cases, restricting their wider application across different scenarios. For example, the 
querying mechanism for traditional (e.g., SQL or NoSQL) data platforms are different from Hadoop1. 
The industrial tools for data management and self-service data analytics such as Trifacta Wrangler2 
or Alteryx Designer3 offer desktop-based environments to prepare, aggregate and analyze data.  

  

Moreover, the influence of Big Data techniques in various application domains is seen in the 
emergence of hybrid approaches for data aggregation. Examples of hybrid techniques include the 
use of machine learning, predictive and clustering algorithms to perform data aggregation 
operations. In addition, some existing frameworks for data aggregation focus on combining data from 
multiple sources in real-time environments (e.g., Apache Spark4). Using such technologies, the 
approaches for aggregating historic datasets still rely on the traditional CRUD (Create, Read, Update 
and Delete) operations. 
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In PIMCity, we aim at using these standard techniques to allow the data owners / providers to prepare 
their data to be shared in the PIMCity ecosystem. Such techniques will be used for data aggregation 
to provide statistics like count, sum, average over specific data attributes such as location, age and 
time. Furthermore, these techniques will support the anonymization part of Task 4.1, supported also 
from anonymization algorithms to ensure data privacy.  

 

Finding appropriate ways to implement privacy principles in the big data business is the most efficient 
way to prevent a conflict between privacy and big data. Privacy by design is one of the fundamental 
mechanisms to address privacy risks from the beginning of the data processing, and apply necessary 
privacy preserving solutions. Privacy by design was firstly introduced by (Cavoukian, 2011), and 
elaborated on the notion of embedding privacy measures into the design of Information and 
Communications Technology (ICT) systems. Consequently, privacy by design empowers the 
individuals in the big data era, as well as supporting the data controllers’ liability and trust. 

 

Anonymization refers to the process of modifying personal data in such a way that individuals 
cannot be re-identified, and no information about them can be learned. It is applied in several cases 
of data analysis. Most of the privacy anonymization models fall into two distinct categories. The first 
includes k-anonymity (Sweeney, 2002) and its extensions (Truta & Vina, 2006) (Machanavajjhala, 
Kifer, Gehrke, & Venkitasubramaniam, 2007) (Li, Li, & Venkatasubramanian, 2007), while the 
second consists of the notion of Differential Privacy (Dwork, 2006), alongside with some variations 
(Gehrke, Hay, Lui, & Pass, 2012) (Machanavajjhala & Kifer, Designing Statistical Privacy for Your 
Data, 2015). While k-anonymity is a mechanism that is applied on the data to make them a bit fuzzier 
to prevent revealing individuals, differential privacy is applied on the answers of the queries on the 
dataset to disclose private information. 

  

Identity disclosure can be prevented with a k-anonymous version of the initial dataset, that is, an 
original record cannot be distinguished within a group of k records sharing quasi-identifier values. 
The basic notion of the k-anonymity model and its extensions is to classify the attributes of a dataset 
into several non-disjoint types: 

• Identifiers: These are the attributes in the initial dataset that explicitly identify the subject 
(e.g., passport number). The removal of the identifiers is a requirement to create an 
anonymized dataset. 

• Quasi-identifiers: These are the attributes in the initial dataset that in combination can 
identify the subject (e.g., age, city of residence). Quasi-identifiers cannot be removed, since 
any attribute is potentially a quasi-identifier. 

• Confidential attributes: These attributes contain sensitive information on the subject (e.g., 
salary, health condition). 

 

Differential privacy is the second category of privacy models, which aims to anonymize the answers 
to interactive queries submitted to a database. Differentially private data sets can be generated by 
creating a simulated dataset from a differentially private dataset or by adding noise to the attributes 
of the initial dataset. The main downside of differential privacy is that privacy guarantees deteriorate 
with repeated use and various techniques to address that need to be considered. 

 

In our PIMCity implementation we will use the K-anonymity approach as it is more popular, easier to 
implement and there are more implementations available. 

  

During our research for the best K-anonymity implementation for our module, we have considered 

                                                 
1 http://hadoop.apache.org/ 
2 https://www.trifacta.com/ 
3 https://www.alteryx.com/products/alteryx-platform/alteryx-designer  
4 https://spark.apache.org/ 
 

http://hadoop.apache.org/
https://www.trifacta.com/
https://www.alteryx.com/products/alteryx-platform/alteryx-designer
https://spark.apache.org/
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various open-source projects that we describe in the following paragraphs, along with their pros and 
cons. The current state-of-the-art in anonymization is ARX5. it is open source, has a GUI version and 
an API in order to access it from external applications. It is fully developed in Java. Its main 
advantages are that it is the most consolidated implementation of K-anonymity, having a strong 
community and more online resources for support on the development. The only disadvantage could 
be its learning curve, since it requires previous knowledge about anonymity algorithms. 

 

Alternatively, to ARX, there is an open-source project called PrioPrivacy6, which is developed by 
Alexandros Bampoulidis and it is being used in the safe-DEED project7. It performs better than ARX 
with extra arguments by slightly relaxing k-anonymity. It is developed in Java using ARX libraries 
which is its main advantage. It is based on an academic research, accompanied by the related paper 
and it is open source. Its main disadvantage is its tough learning curve. 

 

There are also lighter implementations of K-anonymity8 algorithms in Github. However, they are 
less recognized and less standardized. These are not tested enough and are small projects but can 
be good alternatives in case we require early results or faster tests. Another viable option regarding 
K-anonymity methodology is Mondrian14. It is an anonymization algorithm based on the 
generalization field of K-anonymity. Currently, it is the fastest when processing large datasets, but 
the amount of distortion is much superior to standard K-anonymity software such as ARX, meaning 
that the data loss is higher. The most popular project involving this algorithm is developed in Python9.  
Also, there is not enough existing documentation online of the methods that it uses over K-
anonymity. 

 

As the last approach on anonymity algorithms, Microsoft released Presidio10, an open-source 
project designed to anonymize text, images and data. It consists of a local API with multiple 
endpoints. It already has a Docker distribution uploaded and it is practically a plug-and-play service. 
It was developed in Python and Golang and is still an active project. The main advantage is the 
documentation of the entire project, as well as the resources that are already available, such as the 
docker container. This would save developing time and ease the testing phase. Also, it is widely 
known in the developer’s community, under continuous development with a lot of related resources 
online. As the main disadvantage, we found out that it lacks parameterization options. 

  

After evaluating the above options in terms of completeness, parametrization, ease of 
implementation and available expertise, we decided to deploy the ARX implementation.  

 

The current anonymization method implemented is the suppression method. It is the simplest 
approach; it replaces the sensitive values of every column for a given character, in this case it is an 
asterisk (*). The classical suppression method erases the sensitive value without any kind of 
replacement, but due to the relational database implemented, it is not considered a good practice to 
leave blank values since it is prone to faults. 

 

Furthermore, the z-anonymity approach that is proposed under WP2 and is described in the 
deliverable D2.1, section 5.3, will be considered due to its suitability on location and continuously 
changing data. 

  

Our development on T4.1 will be based on the Python programming language due to our expertise. 

 

 

                                                 
5 https://arx.deidentifier.org/ 
6 https://github.com/alex-bampoulidis/prioprivacy 
7 H2020 grant agreement No 825225 https://safe-deed.eu/ 
8 Implementation in Python: https://github.com/Nuclearstar/K-Anonymity & Java: https://github.com/ScottWalkerAU/KAnonymity 
9 https://github.com/qiyuangong/Mondrian 
10 https://microsoft.github.io/presidio/ 

https://arx.deidentifier.org/
https://github.com/alex-bampoulidis/prioprivacy
https://safe-deed.eu/
https://github.com/Nuclearstar/K-Anonymity
https://github.com/ScottWalkerAU/KAnonymity
https://github.com/qiyuangong/Mondrian
https://microsoft.github.io/presidio/
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3.3.  Tool/Module Technical Design  

The tool will follow the typical input-processing-output procedure. The first step is the preprocessing 
of the data that should be done by the user before using the module. The users of the module (the 
data owners) should pre-process their raw data (transactions, CDRs, etc.) to select and export the 
attributes they want to aggregate / anonymize and then provide them in a comma-separated value 
(CSV) file for input to the module. The input for this module will be a set of attributes and their data 
type and description that will be defined by the user. These metadata will be used for the processing 
of the aggregation and the anonymization. Along with these metadata, the actual data to be 
processed will be provided in a flat text-based file (e.g., CSV). The file should have headers that 
correspond to the metadata provided. Finally, the output of this module will be the processed, 
aggregated, anonymized data in a common data interchange format (e.g., CSV, JSON etc.). A 
metadata file / data model description will also be provided. 

 

The following diagram (Figure 1) summarizes the process. 

 

 

 
Figure 1: Data Aggregation module design diagram 

 

3.3.1 Tool/Module Operation 

This tool is aimed to be used from the data owners to process their data before being able to share 
them. The user will be able to view a portion of the data and also all the metadata defined on them. 
The user will choose aggregation options and will be also able to set K-anonymity parameters like 
the k-value and the quasi-identifiers. Basic graphs can be provided to the user to better understand 
the effectiveness of the aggregation / anonymization over the raw data. 

 

3.3.2 Tool/Module Interfacing 

The module will provide an API to share the aggregated / anonymized data to external services that 
will use them for their own purposes. These external services can be other modules of the PIMCity 
implementation or any other third-party application. Their use can vary from re-selling the data to 
exploit them to provide to the users related analytics. 

An output RESTful API will be developed that will allow the data to be exported. The output will have 
two main parts, the metadata - data model that will describe the data structure and attributes and a 
part that will include the data themselves, in a common data interchange format like CSV or JSON. 
At the current stage we cannot define in detail this API, since it depends on the implementation of 
the modules, as well as the respective needs that will be explored during the project implementation. 

 

3.3.3 Configuration and Use 

 

Configuration 
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The REST API (also shown in Figure 2 in Swagger format) is based on two public endpoints 

accessible from outer components and one endpoint only accessible from the Data Aggregation UI. 

The project is hosted at: https://gitlab.com/pimcity/wp4/data-aggregation-api. 

 

The DB used is a Postgres and there is also installed a PgAdmin into the VM, a DB software 

manager. 

 

The list of endpoints is the following: 

 

GET /datasets 

Accessible from external components. Returns an array of the names of the available anonymized 

datasets. 

 

GET /dataset/<dataset_name> 

Accessible from external components. It retrieves all the anonymized data and the metadata object 

from the given dataset. 

 

POST /dataset 

Only accessible by Data Aggregation UI. It receives a .csv file with all the data to anonymize and a 

Metadata object, containing the columns to be anonymized and characteristics of the dataset. 

Listing 1: Data Aggregation Tool endpoints 

 

 

Figure 2. Data aggregation API in Swagger 

 

Dependencies 

The only requirement of the machine running this component, is to have Python v3.8 installed. 

https://gitlab.com/pimcity/wp4/data-aggregation-api
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All dependencies are managed by Poetry11. They can be found in the “pyproject.toml” file, within the 
root of the project.” file, within the root of the project. 

 

Execution 

The full workflow consists in uploading the .csv with the non-anonymized data altogether with the 
metadata object, using the POST /dataset endpoint. Then, it is anonymized and stored into the 
Postgres DB. 
 
To retrieve the anonymized data, it is required to use the GET /dataset endpoint with the name of 
the dataset attached to the query.  
 
In order to check all the anonymized datasets available, the GET /datasets endpoint will retrieve all 
of the available names. 
 
In order to execute the API, clone the repository, go to the main root of the project and run: 
 
curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/get-poetry.py | 
POETRY_HOME=/opt/poetry python && \ cd /usr/local/bin && \ ln -s /opt/poetry/bin/poetry 
&& \ poetry config virtualenvs.create false  
 
uvicorn main:app --reload 
 
Then access to http://localhost:5000/docs to view the swagger documentation. 
In order to use the PgAdmin module, go to http://localhost:5050/. 
 
The complete source-code of the Data Aggregation tool is available at 
https://gitlab.com/pimcity/wp4/data-aggregation-api. More documentation can be found in the 
Readme12 file. 

 

 

 
 

 

 

 

  

                                                 
11 Python packaging and dependency manager: https://python-poetry.org/ 
12 https://gitlab.com/pimcity/wp4/data-aggregation-api/-/blob/master/README.rst 

https://gitlab.com/pimcity/wp4/data-aggregation-api/-/blob/master/pyproject.toml
http://localhost:5000/docs
http://localhost:5050/
https://gitlab.com/pimcity/wp4/data-aggregation-api
https://python-poetry.org/
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4. Data Portability Control 

4.1. Tool/Module Objective 

The right for data portability is a novelty of the EU’s General Data Protection Regulation (GDPR), 
that allows individuals to obtain and reuse personal data from one environment to another (Hert, 
Papakonstantinou, Malgieri, Beslay, & Sanchez, 2018). Some platforms now offer an option for 
exporting user data in structured formats. For instance, Facebook allows users to export their social 
activity in an archived format. Such approaches may suffer from: 

a) An inconsistent data format between systems, where the data structure is limited to simplistic 
JSON or CSV archives. 

b) A complicated configuration that depends on technical knowledge (e.g., implement OAuth2 
connections) or that are slow due to the required manual user actions (e.g., typing the 
password, requesting the archive, waiting for 24 hours and then downloading it). 

c) A Lack of privacy preserving mechanism when extracted data includes sensitive information. 

d) A lack of support for data importation. 

 

The purpose of this tool is to allow individual users to migrate their data to new platforms in a privacy-
preserving fashion. More specifically, it will provide methods for extracting data from one PIMS (e.g. 
Facebook, bank, mobile phone), process it by filtering out (e.g., by applying differential privacy) 
sensitive information such as platform-inferred data (e.g., user unavailability due to event 
attendance) or user-inputted data (e.g., remove login credentials or debit card numbers), and  export 
it into the PDK module, a new PIMS (e.g., EasyPIMS) or a local file in a common data interchange 
format (e.g., JavaScript Object Notation (JSON)). 

 

4.2. Background and State of the Art 

Various solutions for data portability between cloud providers exist. (Shirazi, Kuan, & Dolatabadi, 
2012) presented the design patterns for enabling portability between different type of databases and 
cloud services. (Alomari, Barnawi, & Sakr, 2014) proposed a framework that allows system 
developers to easily migrate data from one cloud service to another. However, these approaches 
are platform specific and do not allow user-defined data extraction and processing to new platforms. 

 

Semantic Web13 was an approach proposed from W3C for modelling user data (usually in the form 
of social networks) in common semantics that could be easily migrated or used by other platforms. 
However, these proposals have typically been considered as academic exercises and mostly failed 
to take off. The main reason is that there have been no incentives embedded for data processors 
that operate under information lock-in by building data silos and hoping to maintain their competitive 
edge against others to enable data portability. 

 

Some examples of systems that allow full data exportation and importation do exists but are usually 
only limited to Email providers (e.g., Google Workspace, Microsoft 365 Business). Email providers 
often offer free data importation for migrating Emails, Calendar and Contacts from alternative 
providers. To our knowledge, no such wholistic tool exist that allows you to connect to some platform, 
download data, adapt them or filter our sensitive information and then migrate data into another 
platform. 

 

4.3.  Tool/Module Technical Design 

The Data Portability Control (DPC) tool incorporates the necessary tools to import data from multiple 
platforms (through the available Data Sources), process the data to remove sensitive information 
(through the Data Transformation Engine), and outport into other platforms (through the Data Export 

                                                 
13 https://www.w3.org/standards/semanticweb/  

https://www.w3.org/standards/semanticweb/
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module). Since the tool does not have a UI for interacting with the users, it provides an interface in 
a form of a generic Control API for controlling all operations from other modules of the PIM system. 

 

The figure below (Figure 3) shows an overview the design of the DPC tool: 

 
Figure 3: Design Overview of Data Portability Control tool 

 

In the current implementation phase (reflected in this D4.2), a complete pipeline of an example use-
case is implemented and presented in the following sections: Import Open Banking data from a 
supported Bank, filter out sensitive information (e.g., filter out IBAN numbers and home addresses) 
and export it in an archive file. To support this use-case, the following modules are implemented: 

• A Data Source module that supports a pull requests (using OAuth2 connections) using the 
TrueLayer Open Banking API. 

• The Data Transformation Engine with available plugins for anonymizing (by masking) values 
of data column defined as sensitive. 

• A Data Export module that supports data extraction in archived files. 

 

The next subsection explains all supported operations and provides details about all components of 
the DPC tool.  

 

4.3.1 Tool/Module Operation 

The DPC tool has a modular design that makes it easily extensible to support different data sources 
and platforms. It consists of a series of Data Sources, a Data Transformation engine, and a Data 
Export module. 

 

The Data Sources are drivers for supporting specific platforms (e.g., Facebook, TrueLayer Open 
Banking, Mobile Phone Use from a smartphone). In its final release, we will provide three Data 
Sources that support different types of data importation and cover the majority of such available 
functions: 

a) manual data importation (e.g., Facebook data) 

b) pull requests authenticated over the industry-standard protocol OAuth2 for periodically 
retrieving data (e.g., bank data pulled using the TrueLayer Open Banking service) 

c) push requests authorized using the JSON Web Token (JWT) internet standard that a platform 
can use to submit data to the tool (e.g., Mobile Phone Use pushed from a smartphone) 
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All provided Data Sources, while specific to a particular platform (i.e., Facebook for manual data 
import, TrueLayer Open Banking for pull requests, and a smartphone app for push requests), could 
later be used as templates to support other platforms based on the needs of each partner. All data 
is saved in an internal datastore per data source module and is available for further processing by 
the Data Transformation Engine when requested. 

 

Each Data Source consists of a manifest file that provides metadata information about the module, 
together with at least one Python script, written in Python 3.5 or greater, that includes the 
implementation of the data source. 

 

{ 

 "manifest-version": 1, 

 "type": "datasources", 

 "class": "datasource-truelayer", 

 "version": "0.0.1", 

 "description": "Allows OAuth2 based connection from TrueLayer open-banking API", 

 "author": "Kleomenis Katevas <kleomenis.katevas@telefonica.com> ()", 

 "license": "MIT", 

 "module": "datasource_truelayer.truelayer", 

 "class-name": "TrueLayerDataStore", 

 "configuration": { 

  "update-interval": 30 

 } 

} 
Listing 2: Manifest of Data Source module (namely "datasource-truelayer") for TrueLayer open-banking API 

At this moment, we provide a complete implementation of a pull-request type of Data Source that is 
capable of connecting with the TrueLayer Open Banking API over secure OAuth 2 connections and 
periodically pull the user’s financial transactions and store in the corresponding data base. The 
interval of each update operation is configurable through a python API. 

 

The Data Transformation Engine is a customizable component, responsible for retrieving the data 
from selected data sources and process the data by filtering out sensitive information. The type of 
data transformation/anonymization that will happen is configurable via plugins in the form of Python 
scripts, called Transformation Programs (e.g., such a plugin applies differential privacy by injecting 
random noise into each geo-location point to protect the user’s exact location). When processing is 
completed, data is passed to the Data Export module for further exportation to other platforms. 

 

The design of the Data Transformation Engine is modular. The core of this engine, based on the 
configuration (as preset by Control API), retrieves the name of the selected Transformation Program 
that will apply on the retrieved data. Thus, as soon as the data is loaded in memory after pulling from 
a Data Source, the Data Transformation Engine will apply a specific Transformation Program on the 
loaded data. All Transformation Programs have the same format and get the very same input. 
However, each one of them has its own functionality that processes differently the given data 
(according to the needs and instructions of the developer), before returning the modified data back 
to the Data Transformation Engine.  

 

The implementation of the Transformation Programs is totally independent from the Data 
Transformation Engine: The design of the DPC tool allows the development of plugins without 
requiring any modification or integration effort on the Data Transformation Engine. 

 

The design of a Transformation Program consists of a manifest file that provides metadata 
information, together with at least one Python script, written in Python 3.5 or greater, that includes 
the dataTransform() function which is responsible for the core functionality of the plugin. This function 
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gets as input from the Transformation Engine the loaded data and configuration parameters as 
defined in the manifest (e.g., parameters for the differential privacy, the data categories that are 
considered sensitive, etc.). An example manifest of a Transformation Program is as shown below: 

 

{ 

 "manifest-version": 1, 

 "type": "datatransformations", 

 "class": "transformation-masking", 

 "version": "0.0.1", 

 "description": "Performs data transformation via masking", 

 "author": "Panagiotis Papadopoulos<panagiotis.papadop@telefonica.com>", 

 "class-name": "DataMasking", 

 "module": "transformation-masking.transformation-masking", 

 "configuration": { 

  "column": "name", 

  "mask": "*" 

 } 

} 
Listing 3: Manifest for Data Transformation Program namely “transformation-masking" that uses masking for anonymizing specific 

data columns. 

At this moment, we provide one plugin (namely “transformation-masking") that hides specific data 
categories (or columns) from selected DPC-related imported data that are considered sensitive, to 
simply mask the values of the sensitive data-column “name” with “*” characters. 

 

The Data Export module is the final component in the tool’s pipeline responsible for exporting the 
data to supported platforms. It will support three main options for exporting the data: 

a) send the data to the P-DS using its interfacing API (P-DS will provide its own data-schema 
that DPC tool will support for exporting data) 

b) send the data to other PIMS (e.g., EasyPIMS) 

c) save the data in a common data interchange format (e.g., JavaScript Object Notation 
(JSON)). 

 

The Data Export module is also designed to be modular, with each of the three data export options 
being a separate module with its own manifest file and implementation script. An example manifest 
for option “c” is shown below: 

 

{ 

 "manifest-version": 1, 

 "type": "dataexports", 

 "class": "dataexport_archive", 

 "version": "0.0.1", 

 "description": "Export transformed data to json file", 

 "author": "Panagiotis Papadopoulos<panagiotis.papadop@telefonica.com>", 

 "module": "dataexport_archive.dataexport_archive", 

 "class-name":"ArchiveExporter", 

 "configuration": { 

  "outputFile": "output.json" 

 } 

} 
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Listing 4: Manifest for Data Exportation module namely "export-archive" that enables DPC tool to export transformed data to file. 

 

Note it is possible to create more than one instances of each Data Export module. For example, a 
user might want to export the data into two different PIMCity platforms or two destinations for the 
archived data. 

 

At this moment, DPC tool only supports the third option of data exportation that exports data from 
the DPC pipeline (data import using the chosen data sources > data anonymization using the chosen 
transformation program) into an archive file. The user has the option to choose which of the data 
sources will be included into the archive, as well as the filename of the archive. 

 

 

 

4.3.2 Tool/Module Interfacing 

By default, the DPC tool does not have a UI for interacting with the users. Instead, it provides an 
interface in the form of a generic Control API for controlling all user-based actions explained above 
(e.g., authenticate / configure the data sources, start the data import, export and delete data). Any 
PIMS component can implement this interface and provide an actual UI for the user. 

 

The Control API is implemented as a secure HTTPS service that comforts to the REST architectural 
style, in order to be compatible with all other PIMS modules. More specifically it provides the following 
functions: 

• List available Data Stores 

• Install / uninstall / configure / clear a Data Store 

• List available Transformation Programs 

• Install / uninstall / configure a Transformation Program 

• Authenticate with external PIMS 

• Start / stop data portability 

• Download exported data 

• Clear all data stores 

 

The complete Control API with all the available endpoints is explained in the following Figure 4: 
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Figure 4: Control API with all available endpoints for controlling the data-sources, data-transformations and data-exports. 

 

While the Control API is available for external use (i.e., from other tools available in the PDK), 
internally it communicates with Python-based APIs of all core components of the tool: 

 

A Data Source API exists per available datastore, that is responsible for authenticating with external 
data sources, or providing the data in the case of manual data import or push requests, configuring 
the parameters of the data import (e.g., fields to be imported), start the data import process, and 
clear the datastores when needed. 

 

The Data Transformation API is responsible for installing / uninstalling transformation programs, 
configuring the available parameters, and finally execute a transformation. 
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The Data Export API is responsible for authenticating with external PIMS for data exportation and 
start the data exportation. 

 

 

4.3.3 Configuration and Use 

This section provides details for distributing the DPC tool in a Linux environment. It consists of the 

Dependencies required in the environment, the Configuration needed, and finally the steps to 

Execute the tool. 

 

Dependencies 

This tool assumes that a Linux-based environment exists with an instance of MongoDB14 v4.2+ 

running at local host. Moreover, Python v3.7+ is also available. 

 

The following Python dependencies are required in order install and execute the DPC tool in a Linux 

environment: 

• flask (v1.1.2+) 

• flask-restful (v0.3.8+) 

• pymongo (v3.11+) 

• requests (v2.25+) 

 

All listed Python dependencies are also included in the requirements.txt file of the project for 

convenience when configuring the tool. 

 

 

Configuration 

To configure the system, you first need to install the required python dependencies. This can be 

automated using the command: 

$ pip install -r requirements.txt 

 

Execution 

The tool can be executed in a Linux-based environment using the command: 

$ python src/run.py  

 

All available arguments (requested when running “python src/run.py -h”) are listed below: 

 

 

usage: run.py [-h] [-cdb] 

                                                 
14 https://www.mongodb.com 
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Data Portability Control (DPC) Tool operations. 

 

optional arguments: 

  -h, --help        show this help message and exit 

  -cdb, --clean-db  Clean DB before running the tool. 

Listing 5: Available arguments of Data Portability Control tool 

 

The complete source-code of the Data Portability Control tool is available at 

https://gitlab.com/pimcity/wp4/data-portability-control-tool . 

 

 

 

  

https://gitlab.com/pimcity/wp4/data-portability-control-tool
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5. Data Provenance 

5.1. Tool/Module Objective 

This module provides Data Provenance (DP) capabilities to the PIMCity platform. A common 
technique in the data protection and/or copyright enforcement in the Big Data business is Digital 
watermarking (DW). DW is a technique used for media content distribution with ownership protection 
in digital markets as those for music or video. To allow users to download purchased content, the 
content owners insert a mark in the content to trace who leaked the content or prevent future leakage. 
However, this often also comes at the cost of degrading the quality of the content (e.g., Spotify15) or 
forcing users to use a given application in a sandbox to reproduce the content they purchase (e.g., 
Netflix16), which can be both impractical, but also unethical in the latter case due to the use of 
proprietary technologies as DRM17 that restrict practical data reuse to data owners. Database 
Watermarking (DBW) instead attempts to create an invisible mark on the data to prove ownership 
and thus keep restrictions on data usage to a minimum. DBW deals with heterogenous data of 

independent objects and tuples unlike video or media watermarking.  

 

Generally speaking, DBW uses a watermarking key for watermark insertion, which can be private or 
public; whereas for watermark detection the technique also requires the use of such key in order to 
verify that watermarked information truly belongs to the owner of the key. In general, database 
watermarking has been approached with robust (an attacker attempts to remove or hide the 
embedded watermark while keeping the database useful) watermarking techniques that are not 
distortion free (modify the least significant bits) and initially only worked for numeric data, for which 
they show significant limitations. We introduce technical requirements for our DP component/module 
in the next paragraph by discussing the minimum set of requirements (functional and non-functional) 
the watermarking technique in PIMCity should comply with. In addition, we implement here a modular 
architecture so that it will be compatible with the addition of new data types and business models for 
watermarking in the final phase of the project. This is particularly relevant to developers and end-
users of the PDK willing to use or extend our module. 

 

Objective 

The DP module provides provenance about the data uploaded by the users to the Personal Data 
Safe (P-DS) through the use of the component in the DT-E. The request to watermark data is initiated 
from the DT-E and handled by the DP module, which effectively returns the resulting watermarked 
version of the original user data that is being requested as part of a transaction at the DT-E. 

 

Watermarking requirements 

Regarding requirements, we assume that the incoming data are already anonymized and consent is 
already provided at the Personal Consent Manager (P-CM) module. Also, we assume that our 
system will not dispute to a true data owner authorship or validity of a watermark. Likewise, a data 
buyer who bought a dataset should be able to provide a proof of it. The list of requirements we rely 
on to develop the DP module are the following: 

• Functional requirements: a requirement that specifies what this module/component “should” 

do. These were defined in deliverable D1.118. 

• Non-functional requirements: a requirement that specifies “how” this module/component 
performs a certain function or functionality. 

 

Naturally, regarding Functional requirements we consider the previously listed requirements in 
deliverable D1.1 for the DP module, namely requirements from R20 (basic output functionality of the 
DP module) to R24. Here we make them specific to the module components, namely watermarking 

                                                 
15 https://community.spotify.com/t5/Content-Questions/Audible-watermarks-degrading-sound-on-Spotify-premium/td-p/1300815  
16 https://medium.com/pallycon/how-netflix-protects-contents-part-2-33c1b60002a3  
17 https://mustech.net/2007/02/drm-and-copyright-legalities-and-ethics/ 
18 D1.1, PIMCity Requirements and Specifications, https://www.pimcity-h2020.eu/app/uploads/2020/06/D1.1_PIMCity-requirements-and-
specifications.pdf (Confidential). https://www.pimcity-h2020.eu/dissemination/  

https://community.spotify.com/t5/Content-Questions/Audible-watermarks-degrading-sound-on-Spotify-premium/td-p/1300815
https://medium.com/pallycon/how-netflix-protects-contents-part-2-33c1b60002a3
https://www.pimcity-h2020.eu/app/uploads/2020/06/D1.1_PIMCity-requirements-and-specifications.pdf
https://www.pimcity-h2020.eu/app/uploads/2020/06/D1.1_PIMCity-requirements-and-specifications.pdf
https://www.pimcity-h2020.eu/dissemination/
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and fingerprinting techniques in the literature. Regarding R22 (type) and R23 (size) watermarking 
requirements in D1.1, we will incrementally add those features as we build the framework, thus 
becoming option parameters in the operation of the DP framework. R21 and R24 are covered by 
tracing or preventing data leakage from the watermarking state-of-the-art, whereas fingerprinting 
may be combined together with watermarking. For data leakage prevention, an appropriate solution 
among public-key watermarking, fingerprinting, traitor tracing, dual watermarking-fingerprinting, 
DRM19 or similarity of data is investigated and concluded we can use the similarity approach for next 
deliverables. The chosen technique is non-invasive to the datasets and it be compatible with making 
the watermark specific for each dataset through the annotation of dataset provenance in a blockchain 
or similar. 

As of today, for Non-Functional requirements, we have the following goals: 

• Distortion-free: watermarks should be as much as possible distortion free though some data 
types may not avail this so easily. 

• Robustness: the watermark technique should be strong enough against any processing, 
malicious or not, that modifies, destroys or erases the watermark. 

• (Un)blindness: with/without having the original piece of watermarked data, data owners 
should be able detect their own watermark. 

• Trace/prevent data leakage (key base watermarking, traitor tracing, fingerprinting): This is 
equivalent to R21 and R24 in D1.1, enabling us to know who bought and/or leaked the data, 
which essentially requires the same or similar scheme functionality for both client - buyer. 

 

As stated above, a technique that can fulfil our goal and cover most of these requirements above is 
watermarking, which works by embedding a hidden piece of information about the source or owner 
of a piece of data. An advantage of this approach is being able to trace back the responsible for the 
possible data leakage, namely a data buyer. The disadvantage is that it is difficult to prevent such 
leakage unless content-screening systems are used together with the watermarking. In order to 
provide a practical application of our approach using this technique to the problem of data ownership 
and provenance, we need to ensure the watermarking is compatible and can be used together with 
the many types of data according to literature (Panah, Van Schyndel, Sellis, & Bertino, 2016) 
(Bianchi & Piva, 2013) and possibly with screening methods also for leakage prevention (Kirovski, 
Malvar, & Yacobi, 2002). Also, and in order to fulfil orders from the D-TE and responding to the Data 
Marketplace with data that is not broken, it should be easy for data owners to verify watermarked 
data, while being difficult to detect and remove a watermark for data buyers. 

 

5.2. Background and State of the Art 

There are three main types of watermarking techniques, whereas each have different applications 
and share some major properties. The robust watermarking techniques are suitable for applications 
that require ownership protection, while the fragile ones serve the purpose of data tamper-proofed 
and integrity. Finally, the dual watermarking-fingerprinting approach provides a mechanism to 
identify the guilty agent who was responsible for the data leakage. 

 

Main properties 

Robustness vs Fragile: robust is for resisting malicious or benign watermarked data updates 
(copyright protection), whereas fragile is used for tamper detection and in order to identify and report 
every possible region in which someone has tampered with the watermarked data (integrity). 

 

A good watermarking technique should also be blind, that is, it should not need the original data or 
watermark to detect the watermark. Moreover, the embedded watermark should only be detectable 
by the data owner. Furthermore, the watermark should not deteriorate the original data and data 
usability should be ensured during the process of watermark insertion (Kamran & Farooq, 2018). 
Finally, it should be distortion free, meaning that updates or insertions into the actual data do not 
affect it. 

                                                 
19 https://www.techopedia.com/definition/3986/digital-rights-management-drm  

https://www.techopedia.com/definition/3986/digital-rights-management-drm
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Database Watermarking 

The state of the art in Database Watermarking is from the VLDB seminal paper in 2002 (Agrawal & 
Kiernan, 2002), which basically presents a novel scheme that watermarks a database of tuples, each 
one with its attributes, using a bit pattern given by a private watermarking key. This technique is only 
compatible to mark attributes in tuples that are numeric attributes and thus assumes that the marked 
attributes can tolerate some slight change in value; namely LSB (least significant bits) changes the 
numeric value insignificantly. It is also compatible with and without primary keys. The marking 
algorithm here takes the following parameters, out of which three and the private key are kept by the 
owner (private): 

 

𝜂 Number of tuples in the relation.  

v Number of attributes in the relation available for marking. (private) 

𝜉 Number of LSB available for marking in an attribute. (private) 

1/𝛾 Fraction of tuples marked. 

𝜔 Number of tuples marked. 

𝛼 Significance level of the test for detecting a watermark. 

τ Minimum number of correctly marked tuples needed for detection. 
Table 1: Insertion in SoA of Database Watermarking 

 

To watermark a database relation R (P, A0, …, A v-1) with primary key P and A number of attributes 

v the algorithm goes as follows: 

Setup: 

• The private key k is known only to the owner of the database.  

• The private parameters above are also privately held by the owner. 

• Let F be a MAC (Message Authenticate Code) function that randomizes the values of the 
primary key attribute P of tuple r (r.P) and returns an integer value in a wide range. F is 
seeded with a private key k known only to the owner. 

 

We compile the state-of-the-art algorithm for watermarking databases, which works as follows in the 
watermark insertion phase (Algorithm 1 is in Figure 5 below): 

 
Figure 5: State of the art Algorithm for Insertion of watermark 
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The idea here is to ensure some bit positions of some of the attributes of some of the tuples contain 
specific values (bit pattern is the watermark), which are algorithmically determined by the 
watermarking private key k of the data owner. The insertion of the watermark in Algorithm 1 works 
as follows: we iterate over all tuples in relation R and in line 2 we decide if the tuple is going to be 
marked. To do so, we use a one-way hash function as MAC to define a function F in line 2 that will 
map values of the primary key r.P of tuple r to a random value in a wide range due to the private 
watermark k used as seed, and then check it is mod zero to the fraction of tuples selected in the 
gamma parameter. The scheme requires this private key also to detect the watermark with high 
probability, but on the other hand it does not require the original data nor the watermark. Line 3 will 
choose the attributes marked in the attribute space. Line 4 selects the actual bit position for a 
selected attribute among epsilon least significant bits parameter that are marked. These two lines 
depend on the private key k, so it is difficult to use such parameters successfully even if guessed at 
random. Guessing the marked attributed and bit positions is not easy. Finally, line 5 decides to insert 
using the marking function (0 or 1) on the selected bit depending on an even first hash value at line 
8 of the mark function for a given private key and primary key. 

 

Regarding watermark detection, we refer to the paper in VLDB for the sake of brevity here, but the 
main idea as said, is to require the private watermarking key in order to figure out the attributes of 
the tuples and the bit positions into them when selected and thus marked. Naturally, the detection 
algorithm must implement a subroutine that determines the attribute and bit position that must have 
been marked and then compares the current bit value with the value that must have been set for that 
bit by the watermarking algorithm. The detection algo is probabilistic so among all the lines, we count 
in how many of them have the expected bit set correctly. In summary, we can find out how many 
tuples were checked (totalcount) and how many contain the expected value (correct). The correct 
are compared with the minimum count returned by the threshold function τ = threshold (totalcount, 

𝛼) for the test to succeed at the chosen level of significance.  

 

Naturally, authors of this work tested the algorithms (insertion, detection) in real world datasets (e.g., 
~500k rows with 61 attributes in the Forest Cover Type dataset, available from the University of 
California–Irvine KDD Archive20 and the performance overheads of each of them is closely related 
to the cost of computing hash values needed either to determine the mark of each tuple or determine 
the presence of such mark in each tuple. 

 

Security 

There are several types of attacks in watermarking, insertion, deletion, alteration, multifaceted, 
additive. Each of the above techniques has its shortcomings in this context. 

 

Regarding attacks on robust watermarking techniques, the main attacks here are based on 
alteration, deletion, mix-match, and sorting. Generally speaking, watermarking techniques defeat 
those attacks by the secrecy of a set of inputs to the algorithm that the attacker is not able to obtain, 
as the embedding secret key and other additional ones. The result is that it is not trivial to detect in 
which tuples the watermark was inserted and thus how to modify it beyond just random guessing. 

 

Regarding attacks on fragile watermarking techniques, Hamadou et al. (Hamadou, Sun, Gao, & 
Shah, 2011) proposed a zero-watermarking technique as countermeasure in additive watermarking 
attacks. The technique is named zero-watermarking because the watermark is not actually inserted 
in the database but instead its information is registered with a certification authority (CA).  

 

Regarding attacks on dual watermarking-fingerprinting techniques, generally the most common and 
studied in the literature are collusion attacks (Ergun, Kilian, & Kumar, 1999). Comparing their 
databases, the attackers find some of the hash entries which do not appear in all colluders’ 
databases. These hashes are usually known as dummy hashes or individualization hashes. 
However, some more hashes appear as well in each of the attacker's copy of the database to defeat 

                                                 
20 http://kdd.ics.uci.edu/databases/covertype/covertype.html  

http://kdd.ics.uci.edu/databases/covertype/covertype.html
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the purpose of attackers guessing their unique database hashes, namely undetected dummy 
hashes. Based on the percentage of these undetected dummy hashes in the database, we can 
ascertain some security guarantees of the scheme as explained in the paper of Steinbach et. al 
(Berchtold, Schäfer, & Steinebach, 2013) of given that such information is enough to trace back the 
colluders. 

 

5.3.  Tool/Module Technical Design  

The operational steps of the DP module are depicted in Figure 6 below. First, users will send their 
data from their P-DS module to the Data Provenance module with the objective of adding a mark to 
their data. First the Watermark Control submodule will receive and queue requests from the D-TE 
component. Once a request is ready to be processed, the Watermark Printer submodule will fetch 
the raw data from the P-DS and communicate with the Watermark Control submodule, which will 
satisfy the data trading request coming from the D-TE. Note the Watermark Printer will need to fetch 
raw data according to the D-TE request from the P-DS and insert a watermark on it. We will also 
save the watermarks’ metadata to a database for later retrieval and tracking of the time, ownership, 
and so forth for each such piece of data. Therefore, two possible approaches will exist for the actual 
watermarking operation at hand: data is watermarked prior to any transaction, or the watermarking 
occurs once a transaction is processed and thus the requestor includes such a reference to the raw 
data at the transaction level. We will consider the latter to be most optimal approach as in fact we 
propose to have a complete view of transaction’s metadata coming from the D-TE module. Here, we 
aim to keep the original watermarked metadata as intact as possible and de-duplicated so that the 
transaction history lives in a separate database that supports our DP submodules above. The latter 
will allow us to log transactions in a private and immutable database of D-TE requests, which 
effectively is a history of transactions also useful for later verification of watermarked metadata as 
required on demand. 

 

The DP module will incorporate the necessary tools to show data ownership for users uploading data 
and for the data buyers to be able to request transactions through the D-TE module. Also, to confirm 
the validity and ownership of the data purchased we may verify such a watermark by simply 
comparing the watermarked data of a given data buyer with the secret key that only a data owner 
holds, so that revealing such secret or private key can convince a judging party if the data owner or 
buyer is correct. Ideally, this could be done without the judge or service provider learning the secret 
directly but indirectly in an outsourced protocol.  

 

In summary, our DP module will be responsible for marking data and keeping a historical log or 
marking transactions in the system before data is delivered to the data buyer. In this manner, we 
can count how many times a particular item has been seen and by whom in the system. Additionally, 
we can consider holding metadata about the identity of the watermarking source and destination in 
the immutable database. Naturally, the watermarked data will be released to the marketplace as 
seen below, so the DP module does not hold data in this database, the reason being that a user that 
buys a dataset could store the data themselves once purchased without the risk of forging our 
watermark. This presents some challenges and choices to be made for operating a content-
screening system, but this is beyond the design in this deliverable. 
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Figure 6: Watermarking Process 

5.3.1 Tool/Module Operation 

The Data Provenance module interacts with several other modules of the EasyPIMS platform, 
namely the D-TE and P-DS. The PIMS Marketplace will be responsible for interfacing with the DP 
module to deliver data to the data buyers once the transaction is fulfilled by the D-TE. 

 

The DP module watermarks data as a centralized component initially. The Watermarking module is 
following the service architecture as in the previous Figure 6 of the module architectural design. The 
submodules are supported by an immutable database for historical transaction requests coming from 
the DP watermarking with security and privacy guarantees when possible. Overall, the DP module 
will operate as a black box system that provides support to watermark data and return it to the Data 
Marketplace once the transaction at the D-TE is completed, thus storing an historical log of 
transactions in the system and counting how many times a dataset has been purchased, for 
example. 

 

A URL dataset use case: 

 
Table 2: URL example list 
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We explore a use case for datasets we have based on list of URLs that users post or visit. In the 
real-world Big Data market, lists of visited URLs are valuable information (see Table 2), which are 
commonly purchased by data buyers for commercial purposes from private data sources (e.g., 
ComScore). Such purpose serves different business goals (e.g., ad placement for reaching 
audiences, demographics, sociological studies). Click streams themselves do not contain any proof 
of data ownership. Therefore, the data owners cannot detect if their click streams are leaked 

 
Figure 7: URL Watermark insertion 

by data buyers without their permission. Existing watermark solutions in the literature cannot be 
applied easily to click streams because click streams including URLs do not tolerate any distortion. 
To overcome this problem, we will introduce a new watermarking technique. The general idea is that 
our solution plays with characters at the URL level by capitalizing some characters as the URL must 
still be valid.  However, deciding which characters to capitalize, our algorithm will generate a random 
set of bits of the same length of the URL in question. We explain in detail how our watermarking 
technique works in the following, Algorithm 2 and 3 (Figure 7 and 8 respectively):  

 

Watermark Insertion (Algorithm 2): A data owner holds a list of URLs that visited for a period of 
time (e.g., one week of URL browser history) and inserts a watermark on the list so that the owner 
can claim ownership in case of illegal distribution. Adding a watermark on the list of URLs should 
change as little as possible because data distortion is not always tolerable here. In a nutshell, the 
owner capitalizes some of chars of the URL in a random way. To decide which chars should be 
capitalized, for each URL, a random bit sequence of the same size of the URL is generated.  If the 

corresponding bit is 1, then the char is capitalized; otherwise, it is left as it is. For example, 

considering a URL and assuming the bit sequence is 101100110101001010, a watermarked URL is 

generated as HtTPs://wWW.nYtImeS.cOm. The watermarked URL is still a valid URL and useful. In 
details, watermark insertion algorithm works as follows: https://www.nytimes.com and assuming the 
bit sequence is 101100110101001010, a watermarked URL is generated as 
HtTPs://wWW.nYtImeS.cOm. The watermarked URL is still a valid URL and useful. In details, 
watermark insertion algorithm works as follows: 

• The owner generates a private key K, a random value rand, and γ which is a minimum 
number of matches needed for watermark detection. 

Remark: These three values are private and only known by the owner. 

• Generates a list Listw with the same size of URL list List. 

Remark: Listw is the watermarked version of List. 

• For each urli in the list, a random id is generated as idi  ⟵ Hash(urli rand), and < idi, urli > is 
inserted into Listw. 

Remark: because the hash is randomized using the rand, it makes hard for an attacker to 
guess idi ; rand is a random scalar  the client can use for the list of URLs. A problem with this 

https://www.nytimes.com/
https://www.nytimes.com/
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approach is that if there are two (or more) identical URLs then ids will be the same. We can 
resolve this problem by generating a set of random scalar values with the size of Listw as 
{randi} i=1,...,List.size(). Now, we would have a random value for each URL; hence generated id 
would be different (because of collision resistant hash function) even if any URL pair in the 
list Listw have identical values. 

• Then, we sort the Listw by id as Listw.sort(id) to prevent guessing attacks on the position of 
each of the tuples with the hashed URL and URL pair, namely (idi, urli), sorting by id. 
However, since for marking our scheme exposes the urli to the data buyer when he obtains 
the dataset, a malicious buyer could observe positions of a new URL in the sorted list. 

• BitSequence generates a set of bits with the same size of urli (excluding special chars) as  ki 
⟵  BitSequence(K, idi, urli). 

 

Remark: Capitalization of chars in a urli should be random. BitSequence (pseudorandom bit 
sequence) generates a bit sequence which includes 0s and 1s. BitSequence is deterministic 
meaning that it generates the same output with the same inputs. However, it is 
computationally hard to find inputs given output. This prevents an attacker to generate a 
forged watermark (see security discussion for further details.) 

• A char is capitalized if the corresponding bit in the bit sequence is 1. If the bit is 0 then char 
is left as it is. 

• ids are removed from Listw. 

• Listw is permuted and returns Listw. 

 

 
Figure 8: URL Watermark detection 

Watermark Detection (see Algorithm 3):  A data owner suspects a list of URLs (List’) is the dataset 
he/she sold. In order to detect if the suspected list belongs to the true data owner or not, a watermark 
detection algorithm is presented. In a nutshell, the owner regenerates bit sequences from a 
suspected (watermarked) list by checking upper and lower cases in a URL. She later compares it 
with bit sequences computed from watermark key K, id, and url. The owner starts counting matches 
between bit sequences. If the number of matches exceeds the certain threshold then the algorithm 
returns detected. For illustration, assume the owner wants to know if HtTPs://wWW.nYtImeS.cOm 
belongs to her. The watermark detection algorithm first retrieves the bit sequence used while 
inserting the watermark. The algorithm appends 1 when it sees uppercase char, 0 otherwise, 
resulting in the bit sequence: 101100110101001010. Later, it computes a BitSequence function as 
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BitSequence(K, idi, urli). If K, id, and url are the same inputs while computing insertion algorithm 
then the output of bit sequence function should be the same. The output of the bit sequence function 
is compared with the bit sequence reconstructed from the URL (nytimes.com). If they are equal, then 
the watermarked URL belongs to the owner. 

 

For example, for HtTPs://wWW.nYtImeS.cOm, the bit sequence is 101100110101001010. Later, it 

computes the bit sequence by running the bit sequence. If K, id, and url are the same inputs while 
computing the insertion algorithm then the output of bit sequence function should be deterministic. 
The output of bit sequence function is compared with the bit sequence reconstructed from the URL 
(nytimes.com). If they are equal, the watermarked URL belongs to the owner.  In details, watermark 
detection algorithm works as follows; 

• Generates a list Lists with the same size of List′ (url list) and initializes counter as 0. 

• Computes lowercase version of each URL (allLowerCase(url)), id (id←Hash(urli,rand)), and 
adds it to the Lists. 

• Sort the Lists by id as Lists.sort(id) 

• For each URL in Lists, a bit sequence ki is generated a set of bits with the same size of urli 
(excluding special chars) as ki ←BitSequence(K,idi, urli). 

• ki' is generated with the same size of ki in line ki’.SizeOf(ki). 

Remark: k’i is generated from the watermarked URL from the suspected list. k’i should be 
the same as ki if the watermark is a valid one (see security discussion for further details). 

• For each selected URL urli, checks if a char is lowercase or uppercase (omits special chars 
as in the insertion algorithm). If the char is uppercase then 1 is appended to k’i, otherwise 0 
is added.  

• Checks if k’i and ki are identical. If they are, it increases the counter by one. 

• After repeating previous steps on each URL, the counter is checked if it is greater than or 
equal to the threshold γ. If it is, then it returns detected.  

Remark: The threshold γ and counter can be omitted in case the owner wants to detect if a 
watermarked URL belongs to her. This approach secures our technique against subset-
attacks (see security analysis for more details). 

 

Algorithms 2 and 3 (Figure 7 and 8) for URL watermarking differ from the state-of-the-art Algorithm 
1 in the fact that the latter applies to datasets with numeric values only as seen in the VLDB work. 
In the VLDB work, they have to skip any other data types at the time of choosing potential candidate 
attributes for insertion of watermarks. Therefore, in Algorithm 1 (Figure 5) they are unable to 
watermark a string of characters. We propose a new method to overcome this limitation here in a 
strawman version of our preliminary protocol that we are developing at IMDEA Networks to 
watermark URLs, which is presented in Algorithms 2 and 3 (Figure 7 and 8). Naturally, we will 
address some of the security issues and limitations we encounter in the above strawman approach 
by extending the protocol using for instance a robust and/or signed watermarking version of it to 
overcome attacks that can easily remove the watermark in batch by converting all URLs to 
lowercase. Other techniques may be combined on demand with watermarking as needed with the 
goal of publicly and securely validating data ownership as well as tracing data buyers during the 
construction of the watermark previous to any data release into a marketplace. The goal as explained 
is to apply this watermark on the datasets that data buyers request before being obtained through 
the PIMCity marketplace. 

 

5.3.2 Tool/Module Interfacing 

This section describes the necessary technical components to be implemented for the first prototype 
of the Watermarking module in PIMCity.  

  

Data Watermarking Control: The Watermarking Control will handle the incoming requests as they 
arrive sequentially. In order to make sure the DP module includes the corresponding watermark we 
will invoke here the Watermarking Printer.  
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Data Watermarking Printer: In order to fulfil data orders from the D-TE, the DP module will insert a 
watermark before the dataset delivery to the Data Marketplace. However, the Data Marketplace must 
provide the necessary API endpoint or means to send this data. The DP module will not store the 
data locally, just transactions metadata in the immutable database. D-TE will invoke this module 
before any piece of data becomes available to the Data Marketplace and thus the buyer downloads 
any piece of data from the system after this process is completed. 

 

Immutable Database: this database holds an immutable registry of data watermarking transactions 
in the system. However, the raw datasets will be held in an aggregated form in a centralized 
component (data lake) or a decentralized one (P-DS) of PIMCity and have gone through 
anonymization procedures already to ensure privacy and adherence to GDPR requirements as well. 

 

Internal queries to the DP module will be supported by an internal REST API (implemented in WP5) 
with an output similar to one following in Listing 6 below. We have not yet decided whether for 
verification we will provide another API endpoint, or it will be a decentralized process local to the 
user and their key as to verify the watermark privately. We do not have any externally facing 
interfaces to design according to platform requirements in D1.1. 

 

Internal APIs: 

• POST 

o Example:  

D-TE module sends to the DP module a request to fulfil a transaction (possibly 
including references to the row identifiers that makes up the data requested), so that 
the DP module proceeds to fulfil the watermarking requirements for it or simply 
retrieve the confirmation that the data is already watermarked. 

DP responds with:  

▪ A 200-Ok response with a body indicating a unique id for the transaction 
requested by the DTE. The id is used for watermarking of the chosen piece of 
data is being processed correctly. 

▪ A 409 or 404, namely conflict or bad request response: Indicates that the 
request could not be processed because this request has been already 
scheduled for processing. 

 

• GET: this endpoint requires the id as parameter key with a value to identify the watermarking 
unique transaction id initiated by the DTE to the DP in the previous POST request/endpoint. 

o Example: DTE obtains the metadata of the transaction being watermarked as 
specifies the id as parameter from the returned body of the POST above. 

o Returns a 200-Ok response with a JSON formatted body file indicating results as 
follows: 

 
{ 

results:  

[ 

{id: “8d7b0f47-55a7-4795-8ec4-2d33af2bf0e5”,  

‘createdAt’: “2020-09-30T12:39:22Z”,  

‘updatedAt’: “”,  

‘status’: “WATERMARK PROCESSED”,  

‘transactionReport’: “NO ERRORS”} 

] 

} 

Listing 6: API output (tentative) 

5.3.3 Configuration and Use 
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We have developed a Minimal Viable Product (MVP) for our data provenance API for this deliverable, 

the repository is in the Data Provenance gitlab21 of PIMCity. The API endpoints are as follows in the 
Figure 9 of our OpenAPI documentation. We have added several types of endpoints to our module. 
The main challenge we found in this implementation is how to transfer data from the Personal Data 
Safe (PDS) through the DTE towards our Data Provenance (DP) module. Therefore, adding a 

middleware as IPFS22 to our API middleware implementation solves the problem of large payload 
requests to our POST endpoints to watermark datasets.  
Additionally, we can decouple that from the API if necessary, at any point if a publish-subscribe type 
of interface if provided at the DTE side, so that we can just collect the dataset hash from 
decentralized IPFS storage and process it with our watermarking module prior to returning it back to 

the DTE. We plan to encrypt datasets on IPFS to data owner privacy, so that only PIMCity DP 
module is able to decrypt them to watermark them before returning them to the DTE again to 
complete the financial transaction of datasets. 
Overall, the goal of this API is to receive requests from the Data Trading Engine to watermarking 
datasets to be traded in the platform and therefore appear in the future PIMCity marketplace with a 
watermark of unique data source ownership. 

 

 
Figure 9: Open API Doc in Swagger portal 

 
Dependencies 
The software module has a number of dependencies we list briefly below. You will need Maven 
installed and Java, as well as the full list of package dependencies found in the pom.xml23. This is 
easily automated with Maven for in-situ code development, build and runtime of an SpringBoot24 app 
we have developed here the Data Provenance API. SpringBoot is a def-facto standard framework 

                                                 
21 https://gitlab.com/pimcity/wp4/data-provenance/ 
22 https://ipfs.io/ 
23 https://gitlab.com/pimcity/wp4/data-provenance/-/blob/develop/pom.xml 
24 https://spring.io/projects/spring-boot 

https://ipfs.io/
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for API development in Java and it is robust for future larger scale deployments, if necessary, with 
many more libraries and tools available than we possibly need to use. 

• Maven: a common tool in the software engineering community used to install, compile, verify, 
run dependencies graph and produce executable for the API server. Advanced usage may 
include creation of archetype templates, integration and testing of dependencies. 

• IPFS: a middleware software for deployment of a local IPFS cluster25 of decentralized 
storage. It also allows connecting to the global IPFS community to distribute data in the web 
in a peer-to-peer manner (not our goal here). 

• Java: language used for development and therefore an OpenJDK (11 in this version) installed 
is required. 

• A pom.xml dependency file: used for graph dependencies by Maven in the SpringBoot 
project. Project dependencies are thus tracked and self-contained in this file. 

 
Configuration 
To configure our DP module we firstly need to enter the appropriate values to configure things such 
as the connection to a database of URLs we have used for testing the module with some real URL 
data. Those values are set in the corresponding application.properties file of the SpringBoot project 
in the above Data Provenance gitlab repository. 
Secondly, to make sure our configuration is valid, we compile our API project by simply cloning it 
locally and running the Maven command:  

• ”mvn clean verify”: for building the executable of the API app. 
 

[INFO] ------------------------------------------------------------------------ 
[INFO] BUILD SUCCESS 
[INFO] ------------------------------------------------------------------------ 
[INFO] Total time:  03:49 min 
[INFO] Finished at: 2021-03-25T21:17:08+01:00 
[INFO] ------------------------------------------------------------------------ 
frodo:data-provenance algarecu$ 
frodo:data-provenance algarecu$ mvn spring-boot:run 
[INFO] Scanning for projects... 
[INFO] 
[INFO] -------------------< com.imdea.org:data-provenance >-------------------- 
[INFO] Building data-provenance 0.0.1-SNAPSHOT 

Listing 7: API build output 

Execution 

To run the executable at the server of the API we can execute the .jar produced by the previous 

command or simply run: 

• “mvn spring-boot:run” : for building and runing the executable of the API app. 
  .   ____          _            __ _ _ 
/\\ / ___'_ __ _ _(_)_ __  __ _ \ \ \ \ 
( ( )\___ | '_ | '_| | '_ \/ _` | \ \ \ \ 
\\/  ___)| |_)| | | | | || (_| |  ) ) ) ) 
  '  |____| .__|_| |_|_| |_\__, | / / / / 
=========|_|==============|___/=/_/_/_/ 
:: Spring Boot ::        (v2.2.4.RELEASE) 
  
2021-03-25 21:30:42.284  INFO 35281 --- [           main] org.imdea.DataProvenanceApplication      : Starting 
DataProvenanceApplication on frodo.local with PID 35281 (/Users/algarecu/eclipse-workspace/data-
provenance/target/classes started by algarecu in /Users/algarecu/eclipse-workspace/data-provenance) 
... 
2021-03-25 21:31:52.746  INFO 35281 --- [nio-8090-exec-1] o.s.web.servlet.DispatcherServlet        : Completed 
initialization in 16 ms 
2021-03-25 21:31:54.383  INFO 35281 --- [nio-8090-exec-5] o.springdoc.api.AbstractOpenApiResource  : Init duration 
for springdoc-openapi is: 648 ms 

                                                 
25 https://github.com/ipfs/ipfs-cluster 

https://ipfs.io/
https://ipfs.io/
https://ipfs.io/
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Listing 8: SpringBoot running API output 

We perform testing of our API using dummy files from the eyeWnder26 dataset we have available 

and we first import to a local Postgres Database (psql -U imdea -d eyewnder), and then chunk it 

for the purpose of testing the API with new data excerpts. To add a file to ipfs is easy manually and 

using our API (/ipfs/dataset POST endpoint) is equivalent to this command, and thus, retrieve it with 

the API using the IPFS appropriate /GET endpoint passing the above hash. Also note, IPFS daemon 

must be installed and running as follows: 

 

$ ipfs add eyeWnder_visits_partuw 

added QmaWFW68YsfWkxWCsW9mxZyFwEi54pFsR6MRzeZDoQEoPh eyeWnder_visits_partuw 

Listing 9: Running IPFS commands 

 

 

$ ipfs daemon 

Initializing daemon... 

go-ipfs version: 0.4.23- 

Repo version: 7 

System version: amd64/darwin 

Golang version: go1.13.7 

Swarm listening on /ip4/127.0.0.1/tcp/4001 

Swarm listening on /ip4/192.168.1.38/tcp/4001 

Swarm listening on /ip4/192.168.99.1/tcp/4001 

Swarm listening on /ip6/::1/tcp/4001 

Swarm listening on /p2p-circuit 

Swarm announcing /ip4/127.0.0.1/tcp/4001 

Swarm announcing /ip4/192.168.1.38/tcp/4001 

Swarm announcing /ip4/192.168.99.1/tcp/4001 

Swarm announcing /ip6/::1/tcp/4001 

API server listening on /ip4/127.0.0.1/tcp/5001 

WebUI: http://127.0.0.1:5001/webui 

Gateway (readonly) server listening on /ip4/127.0.0.1/tcp/9002 

Daemon is ready 

Listing 10: Running IPFS daemon 

 

We provide a travis.yml for automatic builds in the future connected to GitLab tools. The module 

implementations in our repo in Gitlab’s WP4 repository27 contains the MVP configurations exposing 

the API in a web server once deployed (appplication.properties file). Once running, the server can 

be found at the URL endpoint /v3/api/api-docs. This is because the Swagger in Figure 9 is rendered 

in the http address when set up a variable in application.properties, whereas one can export the .json 

or .yaml versions of the API Doc from such location. 

 

The complete source-code of the Data Provenance tool is available at 

https://gitlab.com/pimcity/wp4/data-provenance. 

The current revision implements the following changes as per tag version 28 online:  

                                                 
26 Iordanou, Costas, et al. "Beyond content analysis: Detecting targeted ads via distributed counting." Proceedings 
of the 15th International Conference on Emerging Networking Experiments And Technologies. 2019. 
27 https://gitlab.com/pimcity/wp4/data-provenance 

 
28 https://gitlab.com/pimcity/wp4/data-provenance/-/tags/alpha0.1 

https://gitlab.com/pimcity/wp4/data-provenance
https://gitlab.com/pimcity/wp4/data-provenance
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• Watermarking simple files with URLS using watermarking algorithm operating insertion of 

watermark correctly by calling watermarkingServiceImpl.wmInsert(url_array, key) from IPFS 

controller. 

• Pushing the 'envelope' on IPFS put/get operations 

• Need further investigation on further buggy behaviour of bytes[] in IPFS 
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6. User Profiling System 

6.1. Tool/Module Objective 

The user profiling system is a module developed under the umbrella of the Data Knowledge 
Extraction (DKE) component. This component is the means to extract knowledge from the raw data. 
One of the biggest challenges in big data and machine learning is the creation of value out of the 
raw data. When dealing with personal data, this must be coupled with privacy preserving 
approaches, so that only the necessary data are disclosed, and the data owner keeps the control on 
them. The DKE consists of machine learning approaches to aggregate data, abstract models to 
predict future data (e.g., predict user’s interests in recommendation systems), fuse data coming from 
different sources to derive generic suggestions (e.g., to support decision by users, providing 
suggestions based on decisions taken by users with similar interests). 

 

In the case of the User Profiling system, the final goal is to create meaningful user profiles that can 
be used for companies involved in the online advertising ecosystem. To this end, the profiles will be 
generated using the taxonomy defined by the IAB29. Moreover, the system will be able to incorporate 
different data sources to create a profile as comprehensive and representative of the user as 
possible. 

 
Figure 10: Working schema of the User Profiling System 

 

The figure above (Figure 10) presents the idea of the whole module that can be used to generate 
individual profiles, for example, for its uses in the Real Time Bidding (RTB) ecosystem or can be 
used to generate reports for specific audiences. 

 

                                                 
29 https://www.iab.com/guidelines/content-taxonomy/  

https://www.iab.com/guidelines/content-taxonomy/
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The system is designed to work in a wide variety of scenarios, allowing the development of multiple 
use cases (by adding different analysis algorithms) and the addition of custom data sources. 
However, during the PIMCity project, we will develop those connectors and algorithms that use the 
network browsing history of the users as input to generate a profile for the online advertising 
ecosystem. This component will be a key piece of the Personal Data Avatar and will be integrated 
into the EasyPIMS platform. 

 

The core of the system is the User Profiling Algorithm. We developed a method to generate accurate 

user profiles without the need of infringing on the user's privacy. The main idea lies in a profiling 

technique that solely uses the hostnames of URLs that users visit. Intuitively, our algorithm is able 

to learn similarities among different hostnames by understanding the temporal relations between 

user requests to those hostnames. Once we are able to group similar hostnames, it is sufficient to 

obtain the topic of one of them (e.g., by using an ontology), in order to categorize the remaining 

ones. 

 

Furthermore, we developed a system to interact with the User Profiling Algorithm in different ways. 

Beside the first run of the algorithm to generate an initial profile for a user, it is important to have 

the possibility to rerun the algorithm from time to time to keep the profile updated and as accurate 

as possible. Arguably the most important interaction is the one between the user himself and his 

profile. Our system enables the user to change everything about the output of the profiling 

algorithm. The algorithm supports the profiling while it is the user who eventually keeps full control 

over his profile. 

 

 

6.2. Background and State of the Art 

Targeted online advertising is a multi-billion-dollar business based on the ability of profiling and 
delivering targeted ads to a wide range of users. Due to the privacy erosion associated with such 
business, researchers are trying to understand how profiling works and anti-tracking applications are 
becoming popular among users. Both research and privacy-enhancing apps, however, target ad-
networks or over-the-top providers that have unrestricted access to users' online activity. There 
seems to be little interest in potential profiling activities by “network observers” like ISPs or VPN 
providers. On the one side, this may be explained by the pervasiveness of TLS that secures 
connections end-to-end. On the other side, TLS does leak some information, and it is not clear what 
an eavesdropper can learn about a user, despite her traffic being encrypted. 

 

Some previous studies (mainly carried out by members of the PIMCity consortium (Gonzalez, 
Soriente, & Laoutaris, 2016) have demonstrated the possibility of obtaining user profiles from 
network data in a comparable fashion to the profiles generated by Over The Top (OTT) providers 
such as Google or Facebook. However, the collection of the data from telecom operators is 
problematic, since even when it may be legal under new laws like the GDPR, it may damage the 
image of the companies. We expect PIMCity, and, in particular, the EasyPIMS platform to solve this 
problem by directly involving the user in the profiling system. 

 

The main component of this module is the Net2Vec technology (Gonzalez, et al., 2017) developed 
by NEC. This technology is a flexible high-performance platform that allows the execution of deep 
learning algorithms in the communication network. Net2Vec is able to capture data from the network 
at more than 60Gbps, transform it into meaningful tuples and apply predictions over the tuples in 
real time. This platform can be used for different purposes ranging from traffic classification to 
network performance analysis. 

The Net2Vec technology has been already tested in different use cases in network operators. Among 
those, we highlight its use to detect dangerous behavior from final users (Siracusano, Trevisan, 
Gonzalez, & Bifulco, 2019) or to predict the churn of users among companies.   
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6.3.  Tool/Module Technical Design  

The main objective of this tool is to provide a framework that allows the analysis of different types of 
data to obtain user profiles (or to extract other knowledge from stream data). Network traffic consists 
of high-speed packet sequences (or data derived from them, such as log files) carrying high-level 
information such as sequences of text, images, speech and so on. State of the art (deep) learning 
algorithms have shown remarkable performance for analytics tasks on such sequences of objects, 
and so this tool aims to bring these state-of-the-art ML methods to bear on communication networks. 

 

At a high level, this tool will be in charge of capturing packet data, filtering it, constructing tuples from 
it, and feeding those tuples to the machine learning algorithms in charge of the analysis. More 
specifically, the architecture will consist of a set of five components, each containing pluggable 
modules (see Figure 11): 

 
Figure 11: User profiling system architecture 

Data Capture: This component is in charge of capturing network data from a number of sources 
including network interfaces, traffic trace files or log files. For the demonstration of this tool in the 
PIMCity project, we will use two sources: 1) traffic logs coming from the network operators 
participating in the project and 2) a browser plugin developed as part of the Data Portability task that 
will collect the hosts visited by the users. 

 

Filtering: A set of modules responsible for filtering out uninteresting traffic. This component is 
optional: depending on the data capture module, it may be that all traffic is relevant. In our evaluation 
we implement a module that filters for HTTP traffic. 

 

Tuple Generation: This component transforms the incoming packet data stream into a set of tuples 
suitable for the representation learning component. For example, in the user profiling use case we 
will demonstrate, the tuples are of the form <src ip, hostname>. 

 

Splitter: This component takes, as input from users, a subset of attributes and uses it to split the 
incoming tuple stream into separate sequences of tuples. Analogous to the relational database 
terminology, we refer to these subsets of attributes as keys. The individual sequences become the 
input to the representation learning methods. 

 

Representation Learning and Prediction: This component supports any algorithm that complies 
with the basic methods of the scikit-learn30 API. In addition to the standard ML algorithms, most deep 
learning frameworks have wrappers that expose these methods. The input to the ML models is fixed 
size (possibly padded) sequences of tuples, one per key value. 

 

Users of the platform can implement data analysis use cases by choosing modules for the different 
components described above, along with a specification of a key to be used by the splitter. Extending 

                                                 
30 https://scikit-learn.org/stable/  

https://scikit-learn.org/stable/
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the platform’s functionality can be done by developing additional modules. In the rest of this section, 
we give a more detailed explanation of the various components, as well as of the technical design 
of the modules interacting with the profiling framework. 

 

The main challenges in profiling users from the perspective of a network observer lie in the limited 

coverage of available ontologies and the coarse-grained information obtained from TLS requests. 

With our system, we tackled these challenges by leveraging an unsupervised machine learning 

approach that ultimately allows to assign vector representations to hostname sequences. The 

proposed method is inspired by representation learning, typically used in Natural Language 

Processing to assign vector representations (also known as embeddings) to words carrying 

information about their usage and meaning. The system learns vector representations of hostnames 

based on sequences of hostname requests observed in the network. In the same way the meaning 

of a word can be inferred from the context it is frequently used in, the profiling-relevant information 

a hostname carries can be inferred from other hostnames it is frequently co-requested with. Based 

on the learned hostname representations, we can assign a vector representation to hostname 

sequences and use those to construct an accurate user profile. 

 

For instance, while it is a-priori challenging to assign labels to an API request such as 

api.bkng.azure.com, having the request co-occur in the network, across numerous user sessions, 

with hostnames for which we do have known labels such as hotels.com, enables to learn that 

api.bkng.azure.com is probably a travel-related API end-point. Learning these representations 

across hostnames allows assigning profiling-relevant information to users even if, at inference time, 

only API calls are observed. The details of the algorithm are presented below. Additionally, the 

algorithm is fully parallelizable and can be scaled up to requirements, allowing traffic analysis at line 

rate. 

 

The input data to the proposed representation learning algorithm are hostname request sequences 

across users in the network over a time interval. At training time, the algorithm learns a vector 

representation for hostnames that carries information about the contexts, that is, the other 

hostnames it has been co-requested with. The resulting hostname representations carry information 

about its use and similarity to all other hostnames requested in the network. In a second step, the 

hostname representations are used to construct a hostname sequence representation, which is then 

categorized with a k-nearest neighbor algorithm. The reasonable assumption of the proposed 

approach is that some hostnames do have a unique categorization (from the ontology) assigned to 

them. These categories are leveraged in the kNN algorithm. 

 

We built our representation learning approach on the SkipGram model (Mikolov, et al., 2013), which 

can be directly related to matrix factorization methods (Levy, et al., 2014). While SkipGram was 

originally proposed to learn word representations from sets of sentences, we learn representations 

of hostnames from sets of sequences of hostnames visited by a particular user. Intuitively, instead 

of estimating the likelihood of sequences of words appearing in a corpus, we aim to estimate the 

likelihood of sequences of hosts collected at the network level. The learning mechanism behind 

SkipGram leads the learned representations for elements in a sequence to be useful for predicting 

surrounding elements. In applying this learning framework to sequences of hosts visited by users, 

one would expect the learned representation for, e.g., facebook.com to be predictive for the 

hostname twitter.com, as it is natural for a user to check all her social networks one after the other 

(Benevenuto, et al., 2009). 

 

Let H be the set of all the hosts, and let f:H →R^d be the mapping function, defined as a matrix W 

of size |H| × d, from hosts to feature representations (traditionally called embeddings) we aim to 

learn. d is an hyperparameter of the model which is related to the dimensionality of the feature 

representations. Therefore, for every hostname h ∈ H we can define its embedding as 

h=one_hot(h)W, where one_hot(h) is a vector of size |H| whose hth entry is 1 and all other entries 
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are 0. Given a set of sequences of hosts, a window of size 2m+1 is then moved over such sequences 

and, for each hostname h_c  at the center of the window, the negative log likelihood 

 
of the hosts in the window given h_c is minimized. The modeling assumption is that the hosts in the 

context window are mutually independent given the central hostname h_c. This conditional 

independence assumption yields the following optimization problem 

 
 

Negative sampling, which is closely related to noise contrastive estimation (Gutmann, et al., 2010), 
assumes the probability P(h|h_c) is proportional to the dot product <h_c^t, h'>, where h' is the context 
feature representation of a surrounding host. Similarly, for every hostname h ∈ H we can define its 
context embedding as h' = one_hot(h)W'. By simply maximizing the L2-norm of the embeddings one 
could maximize the dot product for all (context, central) hostname pairs contained in the window. To 
avoid this type of degenerate solutions, the negative sampling objective tries to maximize the 
likelihood for observed (context, central) hostname pairs while minimizing the likelihood for randomly 
sampled negative (context_N, central) hostname pairs. 

 

Therefore, for each of the windows of size 2m+1, we seek to minimize the following log loss function: 

 
 

where h', h ∈ R^d are the context and central representations of hostname h, respectively. K is the 

number of negative sampled hosts, which are drawn according to a empirical unigram distribution 

P_D (Mikolov, et al., 2013), and σ is the sigmoid function. All parameters of the objective (namely, 

context and central representations of hosts) are learned with stochastic gradient descent. 

 

Once the representation learning stage has finalized, we leverage the resulting feature 

representations, in conjunction with a subset of hosts H_L ⊆ H for which their categorization is 

known, to generate a user profile for each session. Usually, the number of hostnames for which 

categories from the given ontology are known H_L is small compared to all known hostnames H. 

Therefore, for all hosts h ∈ H_L we know their related categories c^h = [c^h_1, …, c^h_i, …, c^h_C], 

wherein c^h_i ∈ [0,1] refers to the importance of the category i in the hostname h, and C is the 

number of categories. Note that c^h is not a probability distribution, i.e., it does not sum up to 1. 

 

We define the session s_u^T = [h_1, …, h_n] as the sequence of hosts visited by user u in the last 

window of length T. T can then refer to either a number of hosts (in which case n=T) or to a time 

interval. In general, for a given s_u^T we know the related categories for a number of hosts. In the 

following, we refer to the set of hostnames contained in s_u^T for which we know their categorization 

as labeled set L ⊆ H_L ⊆ H, and unlabeled set U to those hosts for which we do not know their 

categories. We propose a method to assign labels to user session that is both simple and effective. 

We compute the vector representations of a session s_u^T by applying an aggregation function g to 

the set of vector representations of the sessions' requested hostnames. Let s_u^T = g({h | h ∈ s_u^T 

}) be the aggregated representation of s_u^T, our method computes the N (in this work we set 

N=1000) hostname representations most similar to s_u^T according to a similarity metric such as 

cosine similarity. In other words, we use a simple N-nearest neighbor approach to determine a profile 

for a given session representation. We refer to this set of N hostnames as H_{s_u^T}. For each 

hostname h ∈ H_{s_u^T} ∪ L (in the following referred as to H_{s_u^T}^L) a weight α_u^h is 
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computed as follows 

 

 

where [x]+ is the positive part of x. 

 

Once the weights α_u^h for all h ∈ H_{s_u^T}^L are computed, the importance of category c_i in 

session s_u^T, denoted as c_i^{s_u^T}, is computed as follows: 

 
 

Since c^h_i ∈ [0,1], the resulting values c_i^{s_u^T} will be also in [0,1]. Finally, the session s_u^T 

is profiled as 

 
 

This concludes the technical design of the User Profiling Algorithm. 

 

 

6.3.1 Tool/Module Operation 

For the user profiling use case, we assume a network operator (or other actor with access to the 
network traffic) capturing customer HTTP(S) traffic. The HTTP(S) requests are captured by Net2Vec 
and mapped into tuples of the form (src ip/IMSI, hostname). Each tuple represents a hostname 
visited by a user in the network. 

 

In addition, the operator maintains a set of product-related categories C and a subset of the 
hostnames is associated with some categories from C. Note that the number of hostnames for which 
categories are known is small compared to all known hostnames since many hostnames do not 
correspond to webpages but to CDNs, trackers, and mobile application APIs. The objective is now 
to assign, in real-time, a given user (here: IP address or IMSI) to a set of product-related categories 
based on her current URL request sequence. 

 

The standard approach would be to follow a strategy similar to the one used by online trackers, 
where all hostnames visited are stored and used to assign categories to users. This approach, 
however, has several drawbacks. First, it does not scale well since the amount of data per user 
grows continually. Second, storing the browsing history of users raises important difficult issues and 
is even illegal in several countries. 
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Figure 12: Illustration of the proposed framework using the user profiling system. 

To overcome these problems, we will use the User Profiling System to train a neural network model 
that learns the behavior of users. It is then deployed to predict, given a request sequence of a user, 
the product-related categories the user is likely to be interested in. The neural network learns a 
representation of the hostnames from a large number of request sequences. For each input 
sequence, the model is trained to reconstruct one-hot encoding of the hostname from the rest of the 
sequence. This ML model is similar to the word2vec model for learning word embeddings (Mikolov, 
Chen, Corrado, & Dean, 2013) Figure 12 depicts the Net2Vec system for user profiling. This way, 
the model is able to infer the categories associated to unknown hostnames. 

The module requires to be periodically trained using the data available in the system (from previous 
days). Then, it may be queried in a very efficient way when a profile should be generated. 
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Figure 13: API definition of the User Profiling system in Swagger format 
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All of these operations and more can be accessed and executed via the Data Knowledge Extraction 

API (Figure 13). In the following, we will describe the design of the modules of the Data Knowledge 

Extraction API interacting with the profiling algorithm. These modules consist of following methods, 

which are implemented in a way such that they enable the user to keep control over everything at 

the best possible rate. 

 

The GetProfileHandler comes with two methods, GET and DELETE. The GET method has an input, 

the user_id and outputs the user's profile. The DELETE method also inputs a user_id and deletes 

this profile from the database. 

 

The CategoriesHandler comes with three methods, GET, PUT and DELETE. The GET method has 

a single input, the user_id. It outputs the distribution over the categories of the inputted user_id. The 

PUT method, on the other hand, takes as input the user_id as well as a json of a fixed distribution of 

categories. This method manually changes the categories of the regarding user. Furthermore, every 

category that is setup manually is added to a blacklist for categories that stay untouched from the 

algorithm. The DELETE method also inputs the user_id and takes care of resetting the category 

distribution. After calling this method for a user, their category distribution is set back to zero 

everywhere. 

 

The IgnoredCategoriesHandler comes with two methods, GET and PUT. The GET method has an 

input, the user_id and outputs the set of categories that the user wants to keep untouched by the 

algorithm. The PUT method inputs the user_id as well as a custom set of categories. While all 

categories setup by the user manually are automatically added to this list of ignored categories, the 

user can here adjust each category individually. 

 

The TrainHandler comes with a single method, GET. This method inputs the user_id. First, it checks 

whether the user_id is known. Second, the methods checks whether a file or dataset is given for the 

specific user. This dataset needs to contain the visited hosts by the user, which will be the input to 

the profiling algorithm described above. If such a file is given, the method reads in the visited hosts, 

transforms them to a string and sends the string with a request to the node2vec algorithm. The 

algorithm runs once on the given string of visited hosts and outputs a distribution over all possible 

categories that are not blacklisted by the user. This distribution describes the user's interests 

regarding their visited hosts. Furthermore, a timestamp of the run algorithm is added to the profile. 

The method eventually outputs the new learned categories, the distribution over all categories (new 

as well as the fixed ones by the user), the timestamp and for the sake of completeness a list of the 

categories ignored. 

 

 

 

6.3.2 Tool/Module Interfacing 

The User Profiling System may interact with different external components, both from the PDK and 
from external data sources. Among those, we find: 

• The component generating the data input: this component may provide access to the 
browsing data of the users. In a production environment it would be the physical connection 
to the network. For the demonstration of PIMCity (and the EasyPIMS platform) we will 
develop a plugin for the Chrome browser that will collect the data. This component will be 
developed as part of the Data Portability task. This is the main input of the system. 

• The categories for the websites: a list of hostnames with associated categories is required. 
We will use a set of categories obtained from the Google Adwords system that uses the 
categories defined by the IAB. This input is required and could be adapted to different use 
cases by only changing the ontology used. 

• The user dashboard: The User Profiling System will generate a profile that can be presented 
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to the user. It will allow the user to modify the profile or to block parts of it (i.e., a user whose 
profile indicates and interest in medical treatments may want to block that part when the 
profile is sold to third parties). 

 

Figure 14 shows the relations between the different components of the PDK with the User Profiling 
System. 

 
Figure 14: User Profiling System 

 

6.3.3 Configuration and Use 

 

 Configuration 

The final system is based on two REST APIs. The net2vec API takes care of the training, maintaining 
and executing of the algorithm. The User Profiling API is the interface that other systems can interact 
with and that invokes the net2vec API. This intermediate step enables better protection for the end 
user since it blocks any information that the user wants to keep private within the inner system. 

 

The project is hosted here:  https://gitlab.com/pimcity/wp4/userprofilingsystem 

The DB used is a SQLite and the list of endpoints is the following (see section 6.3.1 for details): 

• Profile 

• Categories 

• Ignored 

• Train 

Dependencies 

The following dependencies are required in order to install and execute the User Profiling System 
tool in a Linux environment: 

• Python   3.7+ 

• SQLAlchemy   1.4.1 

• tornado   6.1 

• tornado-sqlalchemy 0.7.0 

• gensim   3.8.3 

 

Execution 

https://gitlab.com/pimcity/wp4/userprofilingsystem
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 The module can be configured and used via multiple methods of the Data Knowledge Extraction 

API. A summary of these methods can be found in 6.3.1. In the following, we will describe the 

methods more thoroughly and how they are used. Note, that each single module is created in a way 

that it gives the user the final control over their profile. 

 

The Get_Profile method lets users fully access their profile. It enables full transparency about the 

user's data and lets the users keep track about all the changes within their profile. Here, they can 

examine their preferences regarding all categories. If the users decided to turn off individual 

categories, then they also get a summary of which categories are turned off. They can also examine 

the last time that their profile was run through the algorithm. If they don't have a profile yet, the 

method can create a new blank profile for them. Vice versa, the users have the possibility to fully 

delete their profile in this method. 

 

The Config_Categories method lets the user interact with the distribution of categories they are 

associated with. If the user allows the algorithm to propose a special profile/category configuration, 

the user can at all times interact with the algorithm's configuration and change everything at their 

leisure. To do so, the user can first read out the current distribution of their categories. Thus, the final 

category distribution lies in the hand of each user, respectively. Each category that the user has 

setup manually will be added to some kind of "blacklist", i.e., a set of categories that will be untouched 

from the algorithm from then on. At last, the user can at any time delete and reset his distribution 

totally. 

 

The Config_Ignored_Categories method lets the user interact with the “blacklist". The user can 

choose which categories they want to keep untouched by the algorithm. Here, the user can get a 

current summary of all categories on this list or change this list freely. The algorithm has no effect 

on the chosen categories on this list. 

 

The Train method only takes place after everything else is settled. With the user's contempt, this 

method runs the algorithm on the user's data to get a distribution over all categories that are not 

blacklisted to get a profile configuration of the user. Every time the algorithm runs, it saves a 

timestamp that can be accessed by the user. The category distribution from the algorithm can be 

seen as a suggestion since the final distribution lies in the hands of the user themselves. If the user 

chose some categories that are ignored by the algorithm, i.e., the blacklist then these categories will 

not be changed by the algorithm at any time. 

 

The complete source-code of the User Profiling System tool is available at 

https://gitlab.com/pimcity/wp4/userprofilingsystem . 

 

 

  

https://gitlab.com/pimcity/wp4/userprofilingsystem
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7. Quantified Self 

7.1. Tool/Module Objective 

The purpose of the Quantified-self dashboard is to present to the user an analysis of their behavior 
based on the data available, especially related to their location. Through comparing their data with 
other users’ aggregated data, the user will be able to better understand not only their behavior in 
relation to other similar users, but also to see the benefits of sharing data in the EasyPIMS setting 
and the value of his/her data. A simple, yet intuitive UI will guide the user to a set of basic actions 
regarding their profile, the data they have uploaded and the graphical representation of their 
behavior. 

  

  

7.2. Background and State of the Art  

The consequence of the history of self-tracking has led us to a point where users are constantly 
generating data about their trajectories, transactions, personal preferences and the like, without even 
having access to the data generated in the first place. Effectively, this is given away freely to 
untrusted digital applications with little or no privacy considerations from the applications. In the 
literature, we find some self-tracking techniques that usually collect information for one or two 
dimensions of the activity of a user. “Personal informatics and personal analytics are terms that are 
used most often in academic literature on human–computer interaction” according to “The Quantified 
Self” (Lupton, The Quantified Self, 2016) . However, there are other approaches that collect many 
more traces of user behavior and for longer periods of time. For instance, telecom operators can 
identify users’ mobile phones just because they are their mobile carrier. This includes track their 
phone identity numbers as the phone IMEI number, triangulate latitude, longitude through cell towers 
and connections to WiFi networks (Razaghpanah, et al., 2018). There are examples of the latter and 
research has shown the privacy issues that this approach creates, sometimes inadvertently for the 
user as reported by tools as the Lumen Privacy Monitor (Vallina-Rodriguez, 2017). Besides, self-
tracking is encouraged31 or even enforced in the case of mobile applications in authoritarian 
regimes32, this gets worse, despite of technology not working in all contexts33. However, in this 
Quantified-Self dashboard we rely on the sociological perspective and assumption from the book of 
Lupton in that the user is aware of this self-tracking, knowingly and purposely collecting such 
information to upload to PIMCity. Therefore, “Self-tracking differs from covert surveillance or means 
of collecting information on people that result in data sets to which the subjects of monitoring do not 
have access” -- and where privacy is not considered by design. 

 

Our Dashboard visualization of our Quantified-Self shall allow for private and transparent data 
analytics of one’s personal data. Related to that, User Privacy Preferences are being explored in 
recent and ongoing EU H2020 projects34. At a first glance in our Dashboard, each user would just 
choose to grant (or not) access to certain types of data from a taxonomy and we would just want to 
give each individual user the ability to visualize access to their data (our Quantified-Self dashboard) 
according to those choices, plus naturally avoiding a view of the rest of the user population in the 
system by design of the platform itself. Therefore, only in case of needing to display global metrics, 
we would propose to use aggregated measurements for the dashboard in the Quantified-Self. This 
is because there may still exist a risk for visualizations displaying far too much granular information 
about the whole user population in the entire system. For example, even if we show a heatmap of 
aggregate user activity to a specific user of the dashboard, in some areas where the activity of user 

                                                 
31 Singapore already planning version 2.0 contact-tracing wearable: 

https://www.theregister.com/2020/06/17/singapore_contact_tracing_wearable_2  
32 Contact Tracing Part of Daily Life for Chinese: https://www.racmonitor.com/contact-tracing-part-of-daily-life-for-chinese  
33 Google and Apple's Contact-Tracing API Doesn't Work on Public Transport, Study Finds:  

https://www.vice.com/en/article/z3epje/google-and-apples-contact-tracing-api-doesnt-work-on-public-transport-study-finds  
34 PlAtform for PrivAcY preserving data Analytics PAPAYA, H2020-DS-SC7-2017 DS-08-2017: Cybersecurity PPP: Privacy, Data 
Protection, Digital Identities. Deliverable D3.4 Transparent Privacy preserving Data Analytics (Karlstad University), https://www.papaya-
project.eu/node/158 in progress. 

https://www.theregister.com/2020/06/17/singapore_contact_tracing_wearable_2
https://www.racmonitor.com/contact-tracing-part-of-daily-life-for-chinese
https://www.vice.com/en/article/z3epje/google-and-apples-contact-tracing-api-doesnt-work-on-public-transport-study-finds
https://www.papaya-project.eu/node/158
https://www.papaya-project.eu/node/158
https://www.papaya-project.eu/node/158


 

 

 
48 

location data is scarce, in the heatmap a few data points will unequivocally identify a person known 
to the user for living in that area. 

 

7.3.  Tool/Module Technical Design   

The Quantified-Self is designed into several screens that showcase its functionality in PIMCity. 
Depending on the available dataset the user can have various insights of the user data. We aim to 
use user mobility data from telco provider in order to exploit and present mainly location patterns 
and behavioral patterns of the user, also in comparison with other users with similar profile (based 
on age, gender, location, etc.). Following are the main operations that we envisage for this module, 
along with the related initial mock-up screens.  

 

The user, after logging-in will be able to access 3 main operations that are listed on the left of the 
screen. The Location patterns, the behavioral patterns and the dataset or taxonomy patterns. 

 

 

An initial screen will welcome the user and present the available options (Figure 15). 

 
Figure 15: Home screen 

 

The Locations Patterns screen (Figure 16) is about geo-location patterns the user can see about 
the contribution he has chosen to make into the system by uploading location data, which he can 
visualize in a different color as it is his private data (granular). Besides, at the global level he can 
see an aggregated heatmap of the world/city/town activity. 
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Figure 16: Location Analysis 

 

The Behavioral Patterns screen (Figure 17) can be based on mobile sensor activity in the system 
that the user has contributed or in data coming from the use/ location of the mobile device from telco 
provider. By choosing the “Behavioral Patterns” tab the user can see his data/activity in a bar plot or 
simple quantitative graph, for example. 

 

 
Figure 17: Behavioural Analysis 

 

User’s behavioral patterns can be compared with other user’s patterns with similar profile, if 
available, and a respective chart/table will be provided to the user. 

 

The Visualize Dataset screen (Figure 18) shows the distribution of contributions to a dataset type 
(location or behavioral) in the user platform. We may also calculate a global rank among user 
contributions according to the local distribution of each of them, with local being the pie chart here 
in darker grey for the type of data. 
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Figure 18: Data visualization screen 

 

 

7.3.1 Tool/Module Operation  

For this task we are leveraging existing technologies as Angular 11 and Typescript. In particular, we 
leverage a web framework that is based on well-known tools and technologies. We adapt the Angular 
web framework to provide suitable data models in the Quantified-Self, so that it fits into the generic 
screens designed. This entails modifying all the parts of a web framework based in the MVC (Model, 
View and Controller35) software design pattern. Naturally, MVC use has evolved since its early days 
of use in SmallTalk36 objects and now it is widely applied in web frameworks as Angular, plus it is 
widely adopted across several other technologies and frameworks for the WWW (e.g., Rails with 
Ruby, Spring with Java). 

• Model: the model represents the data or state and so the business logic of the web 
application. 

• View: the view is responsible to render or visualize the model data, so it is about the 
presentation of the web application to the user. 

• Controller: the controller is essentially an interface between model and view to update things 
accordingly in the web application. 

 

In the frontend, we have a layout with buttons and tabs based on the design of the tools in deliverable 
D2.137 for consistency across project dashboards, but we tailor it to our specific requirements for the 
visualizations that are required in the Quantified-Self screens (Personal, Location, Behavioral and 
Dataset Visualization tabs). Using MVC and a common graphical design produces common ground 
for building comprehensive dashboards across the PIMCity project. Also, using a well-accepted 
common software design pattern for developers and using an accessible programming language, 
namely Typescript, benefits the extensibility and acceptability of our Quantified-self dashboard tool. 
In the next iterations of the Quantified-Self, we plan to change the internals of the MVC of the web 
framework in order to adapt the data model to the incoming feeds, the view to the above screens 

                                                 
35 Model-View-Controller https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller 
36 GUI Architectures, Fowler. M. https://martinfowler.com/eaaDev/uiArchs.html 
37 PIMCity Grant agreement ID: 871370, H2020-ICT-2019-2. Deliverable D2.1 Design of tools to improve user’s privacy, WP2. Public M12 
- 30/11/2020 https://www.pimcity-h2020.eu/dissemination/deliverables/ 
 

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://martinfowler.com/eaaDev/uiArchs.html
https://www.pimcity-h2020.eu/dissemination/deliverables/
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and the controller specific actions for complete functionality of the Quantified-Self navigation and 
options available to the end-user. Besides, the framework should be compatible with any type of 
data storage, should we choose a different database than Mongo (e.g., a time-series database may 
be more convenient than a MongoDB database in order to calculate daily, weekly, monthly, or yearly 
average counts of user mobility). Future functionality will be considered according to the D1.138 
requirements for the Quantified-Self dashboard (e.g., average distance travelled, areas visited, etc.). 
The reference architecture for the Quantified-Self framework is shown below in Figure 19. 

 

 
Figure 19: Quantified-Self architecture 

 
7.3.2 Tool/Module Interfacing  

This module will be able to retrieve input using the related APIs from 

• Individual user data through the P-DS. 

• Data Knowledge Extraction module 

• User Profiling Data 

• Data Aggregation module 
 

The input to this module is directly connected to the available data the above-mentioned modules 
provide through their APIs. These data include user location, patterns about their daily activity and 
profile data. Online browsing activity can also be included from the User Profiling Data tool. The 
available data will be combined, for example the location of the user with the aggregated data 
received from the DA module, to create visualizations for the user. These visualizations will help the 
user better understand their behavioral patterns as it can be highlighted in figures 16 and 17. Apart 
from the aforementioned visualizations, we will explore more of them based on the final available 
data. 

 

Apart from these visualizations, this module does not provide output to other modules. 

The following figure (Figure 20) depicts the data flow related to this module. 

                                                 
38 PIMCity Grant agreement ID: 871370, H2020-ICT-2019-2, D1.1, PIMCity Requirements and Specifications, https://www.pimcity-
h2020.eu/app/uploads/2020/06/D1.1_PIMCity-requirements-and-specifications.pdf  

https://www.pimcity-h2020.eu/app/uploads/2020/06/D1.1_PIMCity-requirements-and-specifications.pdf
https://www.pimcity-h2020.eu/app/uploads/2020/06/D1.1_PIMCity-requirements-and-specifications.pdf
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Figure 20: Quantified-self Dashboard module input and output flows 

 

 

 
7.3.3 Configuration and Use 

 
Dashboard and UI 

For initial testing of an MVP of our QS component, we tested a dashboard using flex templates with 
Plotly39. In the final implementation the user will have to be logged-in in order to use this tool. This 
will be done either with a federated login functionality, or as a per-tool login that, in our case will be 
supported by the  Angular template of our implementation. Code is available at the QS dashboard 

repositories at GitLab40. 

 

Dataset 

We have implemented a synthetic data generator for creating the profile and activity dataset the 
frontend renders in the main QS dashboard. The dataset we produce include several fields and 
customized accordingly to our needs. The code is found in the QS repository41. The fields are self-
explanatory and include but are not limited to the following. More fields can be added on demand at 
the respective implementations42. We use Faker43 to produce our synthetic dataset. 

• Email Id: fake email or user id generated. 

• Prefix: fake prefix generated. 

• Name: fake name generated. 

• Birth Date: fake data generated. 

• Phone Number: fake phone number generated. 

• Additional Email Id: second contact email or user id generated. 

• Address: fake address generated. 

• Zip Code: fake area code generated. 

• City: fake city generated. 

• State: fake country state generated. 

• Country: fake country full name generated. 

                                                 
39 https://plotly.com/javascript/ 
40 https://gitlab.com/pimcity/wp4/quantified-self 
41 https://gitlab.com/pimcity/wp4/quantified-self 
42 https://gitlab.com/pimcity/wp4/quantified-self/-/tree/master/code/generator 
43 https://pypi.org/project/Faker/ 

https://gitlab.com/pimcity/wp4/quantified-self
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• Year: fake year generated (may be used as birth date). 

• Time: fake time generated (HH:MM:SS). 

• Link: fake URL generated (may be used as visited site or homepage of user). 

• Job: fake job position generated. 

• Geo: fake location on land generated. 

• Price: a random value chosen by the generator among a fixed set of lower, upper bounds. 

Activity: a value randomly chosen by the generator among a set of status predefined at the generator 
("sleep", "sport", "travel", "seating", "running") and also extensible for demo purposes. 

 

The complete source-code of the QS dashboard projects is available in the Gitlab repository both for 
the synthetic dataset generating scripts (https://gitlab.com/pimcity/wp4/quantified-self) and the UI 
component for visualization of the dashboard (https://gitlab.com/pimcity/wp4/quantified-self-ui). 

 

  

https://gitlab.com/pimcity/wp4/quantified-self
https://gitlab.com/pimcity/wp4/quantified-self-ui
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8. CONCLUSION 

This document describes the final design of the PIMCity modules with the objective of improving 
data management in the PIMCity project, as part of the WP4 deliverable. This deliverable defines 
the tools for ingesting and aggregating data in a secure and privacy-preserving way, while offering 
to the user’s data portability and data verification features. The tools presented in this document 
include the Data Aggregation (DA), Data Portability Control (DPC), Data Provenance (DP), User 
Profiling System (UPS) and Quantified Self (QS). Note that both UPS and QS tools are under the 
umbrella of Data Knowledge Extraction (DKE) component. 

 

The overall architecture of each module has been discussed with all project partners to allow easy 
integration in the PIMCity PDK. Then, the partner responsible for each module has finalized the 
design in cooperation with the other partners of the WP4. Finally, this document has been reviewed 
by all the WP4 partners and cross-reviews by partners from other WPs. 

 

We refer the reader to the Deliverable 1.1 to have a broader description of the PIMCity project, the 
other PDK modules and the EasyPIMS architecture. A preliminary implementation of the five tools 
included in the WP is available at https://gitlab.com/pimcity/wp4. The final release of the tools will be 
described in the upcoming Deliverable 4.3. 

 

9.  Annex  

In the appendix, we put the status of the software repositories as available at the time of finalizing 

this document 

 

 

  

https://gitlab.com/pimcity/wp4
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