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ABSTRACT Programmatic advertising operates one of the most sophisticated and efficient service
platforms on the Internet. However, the complexity of this ecosystem is a direct cause of one of the
most important problems in online advertising, the lack of transparency. This lack of transparency enables
subsequent problems such as advertising fraud, which causes billions of dollars in losses. In this paper
we propose Ads.chain, a technological solution to the lack-of-transparency problem in programmatic
advertising. Ads.chain extends the current effort of the Internet Advertising Bureau (IAB) in providing
traceability in online advertising through the Ads.txt and Ads.cert solutions, addressing the limitations of
these techniques. Ads.chain is (to the best of the authors’ knowledge) the first solution that provides end-
to-end cryptographic traceability at the ad transaction level. It is a communication protocol that can be
seamlessly embedded into ad-tags and the OpenRTB protocol, the de-facto standards for communications
in online advertising, allowing an incremental adoption by the industry. We have implemented Ads.chain
and made the code publicly available. We assess the performance of Ads.chain through a thorough analysis
in a lab environment that emulates a real ad delivery process at real-life throughputs. The obtained results
show that Ads.chain can be implemented with limited impact on the hardware resources and marginal delay
increments at the publishers lower than 0.20 milliseconds per ad space on webpages and 2.6 milliseconds
at the programmatic advertising platforms. These results confirm that Ads.chain’s impact on the user
experience and the overall operation of the programmatic ad delivery process can be considered negligible.

INDEX TERMS Digital signatures, fraud, online advertising.

I. INTRODUCTION
Online advertising is a multi-billion dollar business. The
Internet Advertising Bureau (IAB) reported that the revenue
generated by online advertising was $124 B in 2019, with an
inter-annual growth rate of 16 % [1]. Besides, online advertis-
ing is the main revenue source of some of the most important
Internet companies, such as Facebook [2] or Google [3],
which are fundamental contributors to Internet innovation.

Programmatic advertising operates one of the most sophis-
ticated and efficient service platforms on the Internet, which
allows to deliver tailored ads based on tens of parameters
(e.g., interests and online behavior of users, the context of the
website/mobile app) through a real-time auction process. The
overall process occurs in the order of hundreds of millisec-
onds and runs on top of a very complex ecosystem depicted
in Fig. 1. In particular, the process of delivering an ad from an

advertiser to a website or mobile app1 involves several play-
ers, such as Demand-Side Platforms, Ad Exchanges, Supply-
Side Platforms, and Ad Networks. The revenue generated by
the impression of the advertiser’s ad is then split between the
website and the involved intermediaries.

The complexity of this ecosystem is a direct cause of one
of the most important problems in online advertising, the lack
of transparency. This lack of transparency enables subsequent
problems such as advertising fraud–which attracts between
5 % and 19 % of the overall online advertising revenue [4],
[5]–or misreporting of ad campaign information to adver-
tisers [6], [7]. The online advertising industry has reacted
to the accusation of lack of transparency creating auditing

1For clarity, we refer only to websites where websites and mobile apps are
equivalent. Differences are contemplated explicitly.
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companies referred to as verifiers. However, in practice, these
verifiers also use opaque auditing techniques that do not help
to solve the problem [8], [7], [4], [5].

In this paper we propose Ads.chain, a technological so-
lution to the lack-of-transparency problem. In particular, we
define a communication protocol to provide end-to-end cryp-
tographic traceability at the ad transaction level. In Ads.chain,
every intermediary involved in the delivery process of an
ad has to include a digital signature in the messages passed
to its buy-side partner. The signature certifies the integrity
and non-repudiability of the parameters containing relevant
information. Therefore, each ad transaction produces a chain
of digital signatures including the identity of each of the
involved intermediaries and their actions. These chains of
signatures provide guarantees of full transparency since any
illegal or inappropriate action, as well as its perpetrator, can
be identified by auditing the chains. Besides, the design of
the protocol as a chain of signatures allows an incremental
adoption by the industry.

Ads.chain can be seamlessly embedded into ad-tags and
the OpenRTB protocol, the de-facto standards for commu-
nications between intermediaries in the online advertising
ecosystem. Moreover, it leverages the existing Public Key
Infrastructure (PKI) used for HTTPS communications to
emit the public key certificates for the validation of the digital
signatures. Hence, the protocol is readily implementable in
the current ecosystem without requiring any modification,
lowering the entry barrier for its adoption significantly.

We have implemented the protocol and made the code
available through the following GitHub repositories [9], [10].
We assess the performance of Ads.chain through a thorough
analysis in a lab environment that emulates a real ad delivery
process at real-life throughputs. The obtained results show
that Ads.chain can be implemented with limited impact on
the hardware resources and marginal delay increments at the
publishers lower than 0.20 ms per ad space on webpages and
2.6 ms at the programmatic advertising platforms.

The rest of the paper is organized as follows. Section II de-
scribes the operation of the programmatic online advertising
ecosystem and a high-level introduction to digital signatures.
Section III introduces Ads.chain, our proposed protocol to
provide end-to-end traceability to individual ad transactions
in the online advertising ecosystem. Section IV details the
implementation of the proposed protocol and the lab envi-
ronment in which we test its performance as described in
Section V. Finally, Section VI concludes the paper.

II. BACKGROUND
In this section, we provide an overview of the operation of the
online advertising ecosystem and relevant details of ad-tag
calls and OpenRTB messages, where our traceability proto-
col is embedded. Besides, we summarize some of the proven
consequences of the lack of transparency and discuss some
of the proposals from the industry that partially address this
problem. Finally, we also provide a high-level introduction to
digital signatures, which enable our protocol.
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FIGURE 1. Overview of the programmatic advertising ecosystem. The arrows
represent the flow of messages in the ad delivery process.

A. ONLINE ADVERTISING OVERVIEW
In its inception, online advertising mimicked the scheme used
in traditional media advertising, where advertisers and pub-
lishers (i.e., owners of websites and mobile apps) closed deals
to show advertisers’ ads on publishers’ websites through
a direct agreement or involving just one intermediary. In
recent years, the model has rapidly evolved to the known
as programmatic advertising ecosystem where ads are traded
through a complex and heterogeneous set of automated plat-
forms, often individually and in real-time. These platforms
communicate among them to serve a suitable ad for a pre-
defined ad space on a webpage. The messaging mechanisms
and protocols these entities use to communicate with each
other are fairly standardized and described later in this sec-
tion.

1) Programmatic Advertising Operation
When a user visits a website, the HTML document of the
webpage is requested from the web server of publisher.com.
This HTML document contains an ad-tag for every ad space
the publisher allocates on the page. Ad-tag is the term used
for the HTML code snippets containing the URLs to retrieve
ad-related content [11]. Each ad-tag contains a URL pointing
to the publisher’s ad server to which the user’s browser
performs an HTTP request starting the ad serving process.
The URL of the ad-tag contains information about the ad
space.

Upon the reception of a request from the user’s browser,
the publisher’s ad server may enrich the request with infor-
mation about the user profile using proprietary information
or requesting it to a Data Management Platform (DMP).2 If
the ad server finds a pre-configured ad campaign suitable
for the user’s profile, the user’s browser retrieves the pre-
configured ad from the advertiser’s ad server. These pre-
configured campaigns typically correspond to private deals
between advertisers and publishers. In case there are no pre-
configured campaigns for the user’s profile, the ad server

2Note that DMPs can be queried from any other intermediary entity in the
ad delivery process.
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forwards the ad request to a Sell-Side Platform (SSP) or ad
network. These traders try to sell the ad space through private
exchanges where only a selected group of buyers have access.

If the ad request is still not sold through these private
channels, the publisher’s ad server places the ad request in
the open market. This process is usually done through an SSP
that forwards the ad request to an Ad Exchange (AdX) [12].
The AdX launches a real-time open auction sending bid
request messages to Demand-Side Platforms (DSPs). This
bid request message includes information about the ad space
(e.g., type, size, and location in the webpage), the domain
(i.e., the website or mobile app), and the user’s profile and
device. The DSPs are entities where the advertisers’ ad
campaigns are pre-configured. Upon the reception of the bid
request, a DSP checks whether the parameters included in
the bid request match any of the pre-configured campaigns.
If so, they respond to the bid request with a bid response
that includes the bidding price and the ad-tag with the ad’s
URL. Then, once the bidding time has expired, the AdX
runs the auction and: (1) informs of the result to the DSPs
with win and loss notice messages; (2) forwards the ad’s
URL through the inverse chain of communication from the
AdX to the user’s browser. Finally, the advertiser’s ad server,
which is usually hosted at its DSP’s ad server, receives the
request for the ad from the user’s browser and accounts for
the impression as performed.

Fig. 1 graphically depicts the process described above. The
overall process takes in practice less than a second, from
which the auction process is restricted to less than 300 ms
in most AdX.3

2) Message Formats and Communication Protocols

The complex procedure described above relies on the ex-
change of different types of messages. We can differentiate
two clear parts in the overall programmatic process. On the
one hand, the sell-side involves all entities participating in
the process until the communication reaches the AdX: the
publisher, the publisher’s ad server, and the SSP. On the other
hand, the buy-side is formed by the DSPs. Finally, the AdX
is the entity communicating the sell and buy sides.

The communication between AdXs and DSPs in the buy-
side uses the Open Real-Time Bidding (OpenRTB) protocol,
a standard defined by the IAB and adopted by the industry.
The OpenRTB defines the format and order of messages
exchanged between AdXs and DSPs (bid request, bid re-
sponse, win/loss notice, and billing notice). OpenRTB uses
HTTP as the communication protocol and JSON (JavaScript
Object Notation) format for data serialization. The latest
operational version is v3.0. It was released in November
2018 and includes a beta version of Ads.cert, a mechanism
to provide signed bid requests, which is one of the basic
components we leverage in our solution to create an end-to-
end chain of signatures per ad transaction.

3https://developers.google.com/authorized-buyers/rtb/start

<script
src="https://ssp.com/ttj?id=123e45b7"
type="text/javascript">

</script>

FIGURE 2. Example of an ad-tag defining an ad space on a web page.

The sell-side entities rely on ad-tags as mean to communi-
cate with each other. The response to an ad-tag call (a request
to the URL of an ad-tag) can be another ad-tag or the final
advertisement. The structure of ad-tags may vary depending
on its function. They may include JavaScript code to perform
dynamic tasks at rendering time or even a no-script section
for the browsers with JavaScript disabled. The information
about the ad impression (such as iframe size, user’s profile,
or the winning price) is embedded in the URL’s query string,
the URL part after the question mark symbol (?). The query
string parameters are separated using an ampersand symbol
(&) and have a key-value format using an equal sign (=)
between the keys and their respective values. Fig. 2 shows
an example of an ad-tag.

B. LACK OF TRANSPARENCY AND FRAUD IN ONLINE
ADVERTISING
1) Problem description
The online advertising industry has managed to develop a
very efficient ecosystem that is able to deliver tailored ads
involving a real-time auction process in a few hundreds of
milliseconds. However, this technology development lacks
appropriate, objective, and transparent auditing mechanisms.
There is no way to check the validity or veracity of the pa-
rameters that an entity A passes to an entity B, either through
ad-tags or OpenRTB messages. Moreover, advertisers are
left out of the process, and what they receive are processed
reports summarizing the performance of their campaigns,
which have been reported to be inaccurate [6]. Besides,
this lack of transparency enables ad fraud, one of the most
important problems of online advertising.

There are different reported forms of ad fraud: from basic
attacks using bots to visit websites where ads are shown [13],
[6] and even clicked [14], to more sophisticated attacks us-
ing malicious software–referred to as adware–that performs
hidden visits to websites from a user’s browser [15]. Given
the lack of transparency, the fraud problem is not isolated to
artificial traffic to untrustworthy publishers. Recent reports
document high scale cases of counterfeit inventory fraud. In
this type of attack, fraudsters take advantage of the impossi-
bility to validate the veracity of the information included in
ad-tags or OpenRTB messages. Domain spoofing is a well-
known attack to introduce counterfeit inventory in the pro-
grammatic ecosystem [16]. In particular, fraudsters launch
fraudulent ad requests from instrumented browsers claiming
to come from popular domains, referred to as premium sites,
where ad spaces are more expensive.
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2) State-of-the-art solutions

- Proprietary Solutions: Pushed by advertisers’ concerns
about the lack of transparency, several independent compa-
nies referred to as verifiers have appeared in the last years,
e.g., IAS [17], White Ops [18], DoubleVerify [19]. These
companies use ad-tags embedded in publishers’ websites,
containers of ads such as iFrames, or the ad creativity to mon-
itor the delivery process of individual ad impressions. How-
ever, these companies operate in an opaque manner. They
use proprietary technology, which has not been validated
and does not address the problem of lack of transparency in
a holistic and efficient manner. Indeed, the effectiveness of
their technology has been questioned by research studies [8],
[7], suggesting that solving the lack of transparency and
fraud problems using opaque auditing techniques is not an
appropriate approach.
- IAB promoted standard solutions: The IAB Tech Lab
has proposed open source standards to address the lack
of transparency and fraud problems: Ads.txt and Ads.cert.
However, these solutions were mainly driven by the recently
discovered domain spoofing fraud attack. Hence, as the ex-
isting proprietary solutions, IAB standards are not designed
to solve the lack of transparency in a holistic manner.

The Authorized Digital Sellers Ads.txt specification,
launched in 2017, consists of a plain text file where pub-
lishers publicly declare the traders (e.g., ad networks, SSPs,
and exchanges) with which they operate. Hence, any player
can check whether the ad request comes from a valid trader.
This ad-hoc solution has obvious limitations. There is a not
negligible portion of publishers not adopting it. Moreover,
Ads.txt imposes to blindly trust authorized sellers [20] and
authorized resellers that could have received the requests
through an unauthorized source [16]. Given the limitations of
Ads.txt, the IAB launched the Ads.cert specification, whose
beta version is included in OpenRTB 3.0. Ads.cert defines
a standardized mechanism by which the publishers can sign
the ad requests using public-key cryptography to provide
proof of their identity. Although this step goes in the right
direction to address the counterfeit inventory, it is not an end-
to-end solution to provide full transparency to ad transactions
and has limitations, as recognized by the IAB in Section 6
of the same specification.4 For instance, the current defini-
tion of Ads.cert introduces a new vulnerability: it allows a
malevolent platform in the selling chain to replicate signed
ad requests originated at a compromised user’s browser. The
replicated ads can be sold to different buyers or even to
the same DSP if appropriate sanity checks in the received
inventory are not performed.
- Ads.chain vs. state-of-the-art solutions:

Extending these initial efforts by the IAB, we define
Ads.chain, a cryptography-based solution that, for the first
time, provides end-to-end traceability in the ad delivery pro-

4https://github.com/InteractiveAdvertisingBureau/openrtb/blob/
master/ads.cert:%20Signed%20Bid%20Requests%201.0%20BETA.md#
6-limitations-and-abuse-vectors-

cess at the level of individual transactions. This guarantees
transparency, accountability, and non-repudiability for every
ad transaction.

In particular, compared to existing IAB standards,
Ads.chain provides a more dynamic solution than Ads.txt to
mitigate the possibility of introducing counterfeit inventory
and extends the signatures defined in Ads.cert to the complete
chain of custody of each ad transaction to avoid vulnerabili-
ties, such as the replication of ad requests.

Finally, existing proprietary solutions do not offer end-to-
end traceability and do not rely on cryptographic solutions.
Most of them are sophisticated measurement-based solutions
to assess the performance of ad campaigns and identify
fraudulent activity. However, they are unable to provide
fundamental functionalities such as accountability and non-
repudiability. Furthermore, these proprietary solutions are,
by definition, non-transparent, whereas Ads.chain is open
source.

C. DIGITAL SIGNATURES
Digital signatures provide cryptographic proof of data in-
tegrity, data origin authentication, and non-repudiation. The
schemes in use on today’s Internet to produce digital signa-
tures are based on asymmetric cryptography, also known as
public-key cryptography, as each entity’s key has two parts, a
public key that is distributed to others and a private key that
is kept as a secret [21].

Asymmetric cryptography provides the capability of de-
crypting with the public key a message encrypted with the
private key and vice-versa, but not with the same key part.
This particularity of public key cryptography is used to
produce digital signatures by encrypting a checksum of a
message, produced using a hash function, with the private
key. The encrypted checksum is the signature and is trans-
mitted with the message. Any other entity can then verify
the signature using the signer entity’s public key to decrypt
the signature and computing the checksum of the message
with the same hash function used in the signing process.
If the decrypted checksum from the signature matches the
checksum computed from the received message, it can be
assumed that the message has not been modified and was
signed with the paired private key (i.e., was generated by the
owner of the public and private key pair).

1) Public key infrastructure and digital certificates
To provide non-repudiation on digital signatures, the owner-
ship of a public key has to be provable. Similarly, an entity
may need to revoke a public key to no longer consider it valid
for validating signatures; for instance, if the paired private
key might have been compromised. The X.509 Public Key
Infrastructure (PKI) for the Internet enables the distribution
of public keys providing such services using digital certifi-
cates signed by Certification Authorities (CAs) [22], [23].

A CA is an entity that validates the identity of other entities
and issues digital certificates for them. A digital certificate
is an electronic document that binds a public key to an
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entity including additional information, such as the key’s
validity period. This document is signed by the issuer CA
to provide trust in it. A domain validated certificate can
be considered sufficient to accept a DNS domain’s public
key as valid. For issuing a domain validated certificate, the
CA checks the administrative control of the fully qualified
domain name [24].

A software trusts a CA if one of two conditions is met. The
first one is that the root certificate, a self-signed certificate of
the CA, is stored on the certificate store used by the software.
The second condition is that the CA certificate is issued
by a trusted CA or the chain of certificates identifying the
CAs (called validation path) leads to a trusted CA and the
CA delegation conditions are valid. The X.509 PKI defines
delegation mechanisms for CAs, and the terms under which a
certificate not directly signed by a root CA can be considered
valid [22], [25]. To be accepted as a trusted root CA by major
browsers [26], [27], a CA can only accept the algorithms and
minimum key sizes specified in the Baseline Requirements
of the CA/Browser Forum [28], an industry consortium of
browser vendors and public trust centers.

2) Digital signature algorithms

The security of asymmetric cryptography schemes is based
on the intractability of their underlying mathematical prob-
lem. Specifically, the integer factorization problem for the
RSA digital signature algorithm or the elliptic curve discrete
logarithm problem for ECDSA (Elliptic Curve Digital Signa-
ture Algorithm) [21]. Following the Baseline Requirements
of the CA/Browser Forum and Ads.cert, we analyze the
performance for RSA using a key size of 2048 bits and
for ECDSA using the curve NIST P-256. The RSA key
size of 2048 bits is the minimum accepted key size for
this algorithm. Hence, it shows the maximum performance
achievable with this algorithm as longer keys would translate
into slower operation times. Among the accepted curves for
ECDSA, we use the curve NIST P-256 since it is the one
proposed for Ads.cert. In both cases, we use the hash function
SHA-256 (as in Ads.cert) to compute the message digest.

The level of security is determined by the weakest of
the two algorithms (signature algorithm and hash function)
used to produce a digital signature. RSA keys of 2048 bits
provide a security strength of 112 bits, whereas the security
strength of both the curve NIST P-256 and the SHA-256 hash
algorithm is 128 bits [29]. In terms of performance, com-
parative studies show that RSA-2048 is faster than ECDSA
P-256 for signature verification [30], whereas ECDSA P-
256 can outperform RSA producing a signature [31]. How-
ever, optimizations on the code and processor architectures
may impact the final performance. Therefore, we conduct a
performance evaluation (using OpenSSL version 1.1.1g) to
measure the marginal delay that Ads.chain operations can
introduce on ad transactions.

III. Ads.chain PROTOCOL DESIGN
In this section we describe in detail Ads.chain. We start iden-
tifying the requirements the protocol has to meet to achieve
its purpose (end-to-end traceability of ad transactions) while
being implementable in the current programmatic ecosystem.
Then, we describe the protocol, and finally, we describe how
to seamlessly integrate it into the current online advertising
ecosystem.

A. PROTOCOL REQUIREMENTS
• Unequivocal custody: in an ad delivery process, only

one player has the right to re-sell the ad space at a
time, following the scheme described in Fig. 1. In other
words, only one player has the custody of the ad space at
a given moment. In the current ecosystem, a malicious
player may declare to own the custody of an ad space,
and there is not an easy way to prove if it is true or
false. Hence, the defined protocol must guarantee the
unequivocal custody principle by which it is verifiable
if a player owns the custody of an ad space.

• Non-repudiability: any action taken by a player should
be undeniable. This property is referred to as non-
repudiability in the security discipline.

• Low latency: the overall ad delivery process takes
hundreds of milliseconds in programmatic advertising.
Therefore, the protocol must incur delays in the order
of a few ms to have a minimal impact on the overall
delivery process. On the other hand, the impact on the
overall page loading time should be likewise small to
avoid affecting the end-user experience.

• Scalability: the online advertising ecosystem delivers
around a trillion ads every day. The protocol must be
able to operate at this scale.

• Seamless integration: the protocol must allow its in-
tegration as part of the existing protocols and methods
in online advertising without the need to modify them.
In particular, it must be implementable in ad-tags and
as part of the OpenRTB protocol, the two methods used
for communication in the sell- and buy-side of the online
advertising ecosystem, respectively.

• Online and offline auditing: the protocol must allow
two types of auditing operations. On the one hand,
online auditing enables an entity to audit the validity
of a received ad transaction in real-time. On the other
hand, each ad transaction must create a log that can be
audited so that misbehaving players can be identified at
any moment in the future.

B. PROTOCOL OVERVIEW
In essence, an ad transaction can be defined by a chain of
individual actions taken by the involved players in the ad
delivery process (See Fig. 1). These actions are, in many
cases, subject to the terms of a contract signed between two
entities.

We propose to generate a digital chain that records the
actions of every player involved in an ad transaction. Concep-
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tually, the chain is formed by blocks. Each block is inserted in
the chain by a player participating in the ad delivery process
and summarizes the most relevant parameters associated with
the actions taken by the player. Moreover, the block is signed
with a private key that unequivocally identifies the player.
Finally, a block is linked with the previous block to form the
chain.

Following this simple protocol, the actions of the first
player in the ad delivery process (i.e., the publisher) are
recorded in the first block of the chain. This first block
includes: 1) An universally unique identifier of the ad trans-
action. 2) Information identifying unequivocally the player
to which the custody of the ad transaction is assigned so that
this player is the unique one with the rights to re-sell that
ad space. This identifier is the player’s domain name. 3) A
foolproof identifier of the user to let the advertiser verify the
final destination of the ad impression. This identifier is the
IP address of the device requesting the ad. 4) Data fields,
which are key-value pairs, where the actions of the publisher
are registered. For instance, these may include the location
of the ad space on the screen and the size of the ad space.
Once all these data are compiled in the proper format, the
publisher signs this block with its private key (for which the
paired public key is publicly available in a digital certificate).
Then, the block is generated and sent to the second player in
the chain indirectly through the user browser.

The first action of this second player (e.g., an SSP) upon
the reception of the first block is to verify the signature. If the
signature is correct, it generates a second block. Otherwise,
it rejects the ad transaction and informs about it to the
publisher. This second block is simpler than the first block. It
includes the signature of the first block creating the binding
between blocks to form the chain. In addition, it includes
the key-value data fields recording the relevant information
associated with the actions taken by the SSP and the identity
(domain name) of the third player to which the custody of
the ad transaction is delegated. These data are signed with the
private key of the SSP, and thus, the second block is created.
The chain, now formed by two blocks, is sent to the third
player.

If the ad delivery process involves n players, the associated
chain has also n blocks. From the second to the last block, all
have the same format described in the previous paragraph.
The only differences among blocks 2 to n correspond to
the data fields (key-value pairs), which may be different
for different types of players (e.g., the data fields from an
SSP and an AdX might be different). The first block is the
only one having a different format since it includes the ad
transaction ID and the IP address of the device, as described
above. The last block of a chain is typically generated by
the DSP winning the last auction of the ad transaction. Note
that the advertiser winning the ad space associated with the
transaction can verify the complete chain5 to audit that no

5We are assuming that a DSP will deliver to each advertiser the chains
associated with its delivered ads.

information has been tampered during the process. Moreover,
the ith player in the chain can validate the blocks of players
1 to i − 1. Hence, a malicious player in position i, which
tries to modify previous blocks, can be easily identified by the
advertiser or any player from position i+1 since the signature
of the modified blocks will be incorrect.

In the previous paragraph, we are considering a distributed
auditing scheme where advertisers take the responsibility
of auditing its own ad transactions. Alternative auditing
schemes can be defined, e.g., a centralized auditing entity that
receives the chains and performs a central auditing process
or an auditing entity defined by each publisher to validate
the ad transactions associated with its websites. Note that it
is up to the industry to choose the most appropriate auditing
approach.

Finally, it is worth reviewing how this simple protocol
meets the requirements defined above:

• unequivocal custody: only one player has the right to
re-sell the ad space at each step of the process.

• non-repudiability: every action reported by a player is
recorded and signed with its private key, for which
the accompanying public key is distributed in a digital
certificate. If a player takes inappropriate actions, it
would be registered and can be proved later.

• low latency: entities executing our protocol need to
perform and verify digital signatures in real-time. The
execution time for these operations depends on several
factors, such as the digital signature algorithm, the
software implementation, and the hardware in which
they are executed. We explore this specific aspect in
detail in Section V. We show that Ads.chain meets the
low latency requirement relying on 1) digital signature
algorithms widely used in today’s Internet communica-
tions, 2) open-source software, and 3) household-level
commodity hardware.

• scalability: the protocol operates at the level of individ-
ual ad transactions, and its scalability may depend on
implementation factors. However, we find that imple-
mentations achieving the low latency requirement also
provide a great degree of scalability (See Section V).

• seamless integration: as we show in Section III-D, our
protocol can be implemented with both ad-tags (used
by sell-side entities) and OpenRTB (used by buy-side
entities).

• online and offline auditing: our proposal allows a player
that receives the custody of an ad transaction to audit the
received chain in real-time. The player can then reject
the transaction if there is any problem with it. Offline
auditing is also possible using the chains associated with
finalized transactions.

C. PROTOCOL DETAILS
In this subsection, we provide further technical details about
the design of the protocol.
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1) Unique identifier of ad transaction

The transaction identifier needs to be unique within each
publisher’s domain. Popular websites are typically served
from a distributed infrastructure of servers–e.g., a Content
Distribution Network (CDN)–and thus would require to gen-
erate concurrent identifiers from multiple servers. Therefore,
they need a systematic scheme to generate identifiers at high
throughputs without collisions.

In OpenRTB 3.0 and Ads.cert, the IAB mentions the need
for having a unique transaction identifier to avoid replay
attacks. However, it does not describe a format for it. We
propose to use the Universal Unique Identifier (UUID) for-
mat described by RFC 4122 [32]. It is a well known and
widely used standard for UUIDs, and there is available code
to generate it in multiple programming languages.

A timestamp-based UUID is formed by 128 bits codifying
three fields: a high-resolution timestamp (60 bits), a clock
sequence (14 bits), and a node ID (48 bits). Popular domains
need to serve ad spaces at a high rate. To meet this and future
higher demands, we propose to provide a resolution of 1 ns.
To this end, we borrow 7 bits from the clock sequence and
assign them to the timestamp. That adjustment leaves another
7 bits for the clock sequence so that we can have up to 128
processes generating timestamps on a single server. With this
format, the theoretical limit of the number of UUIDs per
server is 128 billion per second. Similarly, we can codify
timestamps up to the year 5623 if we use the UNIX epoch.
Hence, it offers enough resolution and scalability to imple-
ment it even in the aforementioned distributed architectures
such as CDNs, which may be serving tens of thousands of
different domains.

In Ads.chain we use the string representation of a UUID–
hexadecimal values of the 16 bytes (128 bits) separated with
dashes after the fourth, sixth, eighth, and tenth byte–as the
transaction UUID and refer to it as tUUID. The tUUID is
generated by the publisher and tied to the ad transaction since
the first signed block.

2) Blocks codification

A block in our protocol is formed by a set of data fields (key-
value pairs) and the identity (domain name) of the next player
in the chain, which is also represented in the format of a key-
value pair. These data are certified by the digital signature
of the player that generated them, which is also part of the
block.

In order to include the block information in the ad trans-
action data, we only need to include three strings at every
step: the custody field specifying the entity to which the sell
is delegated, a keys-string that concatenates the keys of the
fields included in the signature–separated with a special de-
limiter character–and the signature string codified in base64.
The data signed is a string with the values corresponding to
the keys in the keys-string, in the same order. The signatures
are performed over the SHA-256 hash digest of this string of
values. Note that we do not need to include this string in the

request as the values are already included in the request data,
but we need the keys-string to be able to form it.

3) Handling Auction Processes
In an auction process, the custody of the transaction cannot
be delegated until the process is concluded, and the winner
of the auction (which will be the one receiving the custody
delegation) is known.

Therefore, the entity launching the auction does not del-
egate the custody initially. Instead, it provides a temporary
chain where its last block includes a temporary signature.
This chain allows the participants in the auction to validate
that the auction is run by the entity (usually an AdX) owning
the custody of the ad transaction, as well as to check the
information included in previous blocks.

When the auction is completed, the winner entity receives
the OpenRTB billing notice message, including the final
chain of blocks that delegates the custody of the ad transac-
tion to the winner entity. The last block of this chain includes
the domain name of the winner entity in the corresponding
field.

If the auction corresponds to the last event of the ad deliv-
ery process, the winning entity, typically a DSP, generates the
last block of the chain. This block signed by the DSP should
include information regarding the advertiser, campaign id,
and creativity associated with the ad delivered to the user.

4) Publisher signature in mobile apps
Ads.chain is designed to work independently of ad transac-
tions on websites or mobile apps. However, transactions in
mobile applications start on the user device with a request
generally to a sell-side platform instead of a publisher’s
server. In this case, the app creates the Ads.chain block and
requests a trusted server of the app’s publisher to sign it
before sending it to the next intermediary in the custody
chain. Note that many apps already interact with their back-
ends, so adding this functionality is expected to require little
development effort.

D. SEAMLESS INTEGRATION
Ads.chain can be seamlessly integrated into ad-tags and
OpenRTB, which are the de-facto standard communication
techniques used in the sell and buy sides of the online
advertising ecosystem, respectively. Both ad-tags and Open-
RTB messages specify the parameters in key-value pairs.
Hence, we can embed the block fields (i.e., signature, cus-
tody, and keys-string) while maintaining compatibility with
current implementations. Specifically, in the ad-tag’s URL,
the parameters are appended to the query string as there is
no hierarchical structure. Whereas, in OpenRTB objects, the
fields should be included in the Source object as proposed in
OpenRTB v3.0 for Ads.cert [33].

Entities not implementing Ads.chain would only need to
ignore the associated fields. However, these entities would
generate a gap in the chain of custody since they do not
generate a block in the chain. We conjecture that with the
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FIGURE 3. Representation of the Ads.chain block at each level of an ad transaction. The AdX block in the final chain is the block included the billing notice sent only
to the DSP winning the auction. The bid request block is temporary for the RTB auction process and thus it is not received by the advertiser’s agency.

incremental adoption of our protocol, entities failing to im-
plement it may be penalized in different manners. Some
players may pay less for ad transactions having gaps in the
trust chain due to the associated trust issues. Other players
may directly reject ad transactions that do not implement
Ads.chain end-to-end. These penalties may be an incentive
for a faster adoption of the proposed protocol.

Finally, we propose to use for the public key certificates
the existing X.509 Public Key Infrastructure (PKI) for the
Internet that provides support to HTTPS communications.
In order to distribute the public key certificates, we pro-
pose to use domain validated certificates of a specific sub-
domain of the signer entity–e.g., ads.example.com for the
entity example.com–issued by existing CAs trusted by major
browsers. This allows restricting the use of the key only
for the purpose of Ads.chain following the best practices
recommended by the US National Institute of Standards and
Technology (NIST) [29]. Therefore, servers of this subdo-
main should not start the key exchange process on SSL con-
nections but expose the certificate to the client. An alternative
solution is to make the certificate accessible under a standard
relative path, e.g., example.com/ads-chain.crt. This alterna-
tive solution is similar to the one proposed for Ads.cert;
however, we emphasize on using digital certificates to ensure
the non-repudiation of signatures.

E. TRUST CHAIN EXAMPLE
Fig. 3 shows an example of how the final chain received by an
advertiser looks like. Moreover, in the following link6, inter-
ested readers can access the format of the chain received by
the different players of an ad transaction example involving
a publisher web server, an SSP, an AdX, and a DSP winning
the auction process and delivering the ad.

6https://github.com/apastor/ads-chain-cpp-platforms/tree/master/
ads-chain-examples

F. Ads.chain VS. BLOCKCHAIN

Every ad transaction produces a chain of signed blocks.
The demanding time constraints for delivering ads to users
in real-time make impractical annotating these individual
signed blocks of a chain as entries of a blockchain distributed
ledger. Blockchain inspired solutions are more suitable for
offline (not real-time) processes in the context of online
advertising. For instance, they can be used for the verification
of authenticity and uniqueness of the Ads.chain transaction
chains.

IV. Ads.chain IMPLEMENTATION AND LAB PROTOTYPE
To test the viability and performance of the proposed pro-
tocol, we have built a lab scenario with the main entities
present in the delivery of ad transactions in programmatic
advertising. We have also implemented an external library
that offers all the code components required to implement
Ads.chain by any of the platforms involved in an ad delivery
process. Both the entities of the lab prototype and the library
are implemented in C++, and their associated code is publicly
available on GitHub [9], [10].

A. LAB PROTOTYPE OF ONLINE ADVERTISING
ECOSYSTEM

We have reproduced in our lab prototype a scenario similar
to the one depicted in Fig. 1. In particular, it is formed by
a publisher’s website server, a sell-side entity acting as the
publisher’s SSP, an AdX connecting the sell and buy sides,
and a DSP as the buy-side entity. There is also an ad server for
serving the final ad to the user’s browser upon the reception
of the ad-tag of the auction winner.

We deploy each entity in independent instances in a pri-
vate OpenStack with two compute nodes. The platforms are
implemented using a common base structure: Nginx [34] as
the HTTPS server connected with FastCGI to a Cppcms [35]
backend in C++. We decided to use C++ as the programming
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FIGURE 4. Image of the landing page of the mock website7 used for the
publisher. The image only contains 1 ad space with ad-tag written in red in the
frame.

language to have a better estimation of the optimal perfor-
mance that can be achieved with a simple implementation.

For the purpose of our experiments it is not relevant to
use a different key pair for the HTTPS communications
and Ads.chain. Therefore, we use the same key on each
domain for both purposes. The public keys are cached by
the Ads.chain library on each entity upon the validation of
the digital certificate, eliminating the impact that obtaining
and validating keys could have on the ad transactions. We
issue the digital certificates with the same private Certificate
Authority (CA) created with OpenSSL [36] and installed in
all the entities as trusted.

For the sample website, we modified a static website
template7 adapting it to the Model-View-Controller pattern
of Cppcms to generate dynamic content. We use parameters
in the query string to customize the petition to the publisher’s
web server. This is the mechanism we use to control the
number of ad-tags included in the webpage, whether to sign
the requests, and to provide a test ID to include in the
server-side logs to conduct our performance analysis (See
Section V). All the parameters are optional, and the server
returns by default one signed ad-tag. As the layout of the ads
is not relevant for our purpose, the ad-tags are included as
elements of an HTML list that the CSS presents with three
elements per row in the lower part of the page. Fig. 4 shows
the landing page of the sample website used for the publisher.

The programmatic platforms are implemented as Cppcms
servers as well. Their first task upon the reception of a request
is to check if the fields with signatures are present in the
request. If they do, they operate accordingly to the Ads.chain
specification described in Section III. If not, they process
the request following the basic procedure of the platforms
without signature verification.

7The website template is obtained from freewebsitetemplates.com

The auction process in the ad exchange is simulated by
launching the bid request to the DSP asynchronously. After
120 ms, the ad URL is extracted from the DSP’s bid response
and returned to the SSP. Upon responding to the SSP, the
ad exchange sends the billing notice to the DSP. The billing
notice certifies the DSP as the winner of the auction and in-
cludes an updated Ads.chain block that delegates the custody
of the ad transaction to the DSP.

B. Ads.chain LIBRARY
The C++ Ads.chain library provides classes and functions for
the cryptographic operations, network-related functionality,
generating UUIDs based on the Unix timestamp, and the
logging of execution times. We use this library to implement
the protocol in the publisher’s web server and programmatic
platforms.

The library uses CMake for building the source and Co-
nan [37] for dependency management. The main dependen-
cies of the project are OpenSSL 1.1.1g [36] for the crypto-
graphic operations, RapidJSON [38] for the data structure of
the ad transaction information, the Boost Uuid module [39],
and Poco [40] for the HTTP requests, caching, and logging.
We also use Google’s Fruit [41] for dependency injection. In
this section, we describe at a high level the design choices
we made for the different functionalities implemented in the
library to be used by the programmatic platforms. The library
is available in a Github repository [9], and the interested
reader can refer to the project repository for low-level details.

- The crypto submodule of the library provides C++ wrap-
per classes to OpenSSL. As an entity always signs with the
same key, the Signer class receives the private key as a param-
eter in the constructor. The Verifier class, as it is expected to
verify signatures from different domains, receives the public
keys directly in the verify function. The submodule has C++
high-level wrapper classes for the OpenSSL key structures
that are especially useful for managing the cache of public
keys.

- The network submodule includes classes for retrieving
and caching the public keys. The public key service caches
the keys using the Poco Least Recently Used (LRU) cache
with time expiration. If a key is not present, a data access
object opens a brief SSL connection to the HTTPS port of the
target domain server to retrieve and validate its digital certifi-
cate. When a public key is requested to the domain, the public
key service adds it to its cache. The network submodule also
implements wrapper functions for the HTTPS request and
functions for the transformations between query strings and
RapidJSON formats. The programmatic platforms can use
GET calls when the ad transaction parameters are encoded
in the query string (generally on the sell-side) and POST
calls when using the OpenRTB JSON objects. Besides, the
submodule also has a function to re-create the string that was
signed at a given level of the chain of custody. The fields
that this function adds to the string are extracted from the
keys-string field, so that it can be applied to any block in
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the chain independently of the information signed by the
platform generating each specific block.

- The tools submodule provides a time-based UUID gen-
erator and two stopwatch classes for taking time execution
measurements. The UUID generator uses the Boost Uuid for-
mat [39] and follows the style of the generators of the library.
We implemented it given the lack of a time-based generator
in Boost. The first stopwatch is semi-automatic and logs the
elapsed time from the object instantiation to the call to the
stop function. The other stopwatch is fully automated using
RAII (Resource Acquisition Is Initialization) [42] to compute
the time between the object construction and destruction.
Both stopwatches use the logger passed as an argument to
their constructor and allow to set extra fields for additional
information of the configuration for which the times are
taken.

V. PERFORMANCE EVALUATION

Ads.chain may slightly increase the processing time to render
a webpage since it forces to generate the ad transaction ID,
create a block, and sign it. Likewise, the processing time of
ad transactions in programmatic platforms (SSPs, AdX, and
DSPs) may increase with the use of Ads.chain due to the need
to create a block and its associated digital signature.

As described in Section III-A, the delay incurred by
Ads.chain must be limited to guarantee a negligible impact in
(1) the load time of webpages–since it has been reported that
a high page load time affects the user experience [43]–and (2)
the overall time required to deliver an ad in the programmatic
ecosystem. Increasing the delay associated with the delivery
of programmatic ads may reduce the number of ads that are
rendered to the user.

In this section, we leverage our lab prototype and the
specific functions implemented in the Ads.chain library (See
Section IV) to evaluate the impact on performance introduced
by Ads.chain on publishers and programmatic platforms. To
this end, we run experiments with and without Ads.chain,
using two reference digital signature algorithms (See Sec-
tion II-C2), RSA with a key size of 2048 bits and ECDSA
with the curve NIST P-256, and compare the obtained re-
sults. First, we analyze how Ads.chain affects the publisher’s
performance, especially on the page serving times. Then, we
illustrate the impact on programmatic platforms analyzing
the case of the SSP.

An aspect to highlight in our evaluation is that we are
assuming that Ads.chain executes sequentially to the rest of
the actions run by the web server or programmatic platforms,
and thus we are reporting marginal delays for a worst-case
scenario. In the real world, a server’s backend performs
multiple tasks in parallel and asynchronously. Therefore, in
production environments, Ads.chain should be transparent
in terms of the delay as backends generally perform other
slower operations.

1 3 5 8 12 18 24 30
number of ads

200

400

600

800

1000

se
rv

er
 th

ro
ug

hp
ut

cores = 2

algorithm & client throughput
 rsa2k
 ecdsa

1000 req/s
  750 req/s

500 req/s
250 req/s

100 req/s

1 3 5 8 12 18 24 30
number of ads

cores = 16

FIGURE 5. Throughput achieved by the publisher on the test benchmarks for
the smallest and largest server sizes tested. The color and line type indicates
the signature algorithm used and the marker the throughput emitted by the
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A. PERFORMANCE AT PUBLISHER’S SERVERS
We define the Page Serving Time as the time between the
instant the web server receives the query from the browser
and the instant when the web server sends the page to the
browser. As discussed in Section III, publishers implement-
ing Ads.chain include the ad-tags with their signatures on
the requested webpage, and signatures are created upon the
reception of the request in real-time because they include
information linked to the user making the request. Therefore,
this metric allows us to objectively measure the impact that
Ads.chain has on the overall page load time, and thus, on the
user experience.

We conduct our evaluation for different web server’s ca-
pacities. We run stress tests launching the server of our
example website on instances of 2, 4, 8, and 16 vcpus from
our private OpenStack (See Section IV-A). Moreover, as the
signature has to be done for every ad-tag, we conduct tests
for various numbers of ad spaces per page, from 1 to 30.8

We indicate the number of ads and whether to use signed
ad-tags with parameters of the query string, as explained
in Section IV-A. For launching the requests, we use wrk to
generate throughputs from 100 to 1000 requests per second,
equivalent to 8.6 M and 86 M requests per day9. The duration
of the tests is 1 minute, and a script verifies that the server’s
responses include the ad-tags for correctness. The server
execution time for every request is logged with an additional
parameter to identify the test. We repeat the battery of tests
for the three possible configurations: using signed ad-tags for
the two types of keys, RSA and ECDSA, and without signed
ad-tags.

Before evaluating the obtained delays, we characterize the
impact of implementing the protocol in terms of throughput
and resources usage. Fig. 5 shows the throughput achieved
in all the test configurations for the publisher servers of
2 and 16 vcpus. Note that we configured a conservative
timeout in wrk in order to identify the maximum through-

8Previous studies have identified a wide range in the number of ads served
per webpage, being 10 the average and 47 the maximum [44].

9Data provided by SimilarWeb [45] indicates that, for instance, cnn.com
has in average 45M daily page visits.
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put achievable by the server without errors. The throughput
results of wrk show that with RSA, the server could not
maintain the rate of the requests for the most demanding
configurations. We monitored the CPU and memory usage
with pidstat [46]. Fig. 6 shows the maximum CPU usage for
each test, including the contribution of the Nginx server and
the publisher backend application. The pidstat results show
that the CPU overhead with ECDSA is lower than with RSA
and that implementing the Ads.chain protocol has no impact
in terms of memory usage. The results show that the impact
on hardware resources is acceptable for the ECDSA keys for
all the considered configurations and for the RSA keys for
those less demanding scenarios.

Next, we focus on analyzing the impact that Ads.chain’s
signed ad-tags have on the page serving time. For this pur-
pose, we compute the requests times’ percentiles for both
runs of every test, with and without signed ad-tags. Fig. 7
shows the increment in the page serving times added by
Ads.chain at the 99th percentile, and Table 1 summarizes
the marginal delay per ad space. The results indicate that
Ads.chain introduces delays ranging from 0.1 ms to 0.6 ms
per ad space when the publisher uses ECDSA P-256 keys,
depending on the scenario: number of ads per page, server
throughput load, and capacity. Instead, when the publisher

TABLE 1. Marginal delay per ad space introduced at the publisher by
Ads.chain in the different experiment configurations.

time (ms) RSA 2048 ECDSA P-256
min mean max min mean max

90th percentile 0.8 1.7 3.3 0.1 0.2 0.4
95th percentile 0.8 1.9 3.9 0.1 0.2 0.4
99th percentile 0.9 2.4 4.4 0.1 0.2 0.6
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FIGURE 8. Maximum CPU usage at the SSP for the different tests.

uses the RSA keys, the additional delay per ad space at
the 99th percentile ranges between 0.9 ms and 4.4 ms. The
overhead introduced for the generation of UUIDs is in the
order of µs.

Based on these results, we find that for pages with dynamic
content, the impact of Ads.chain when using ECDSA keys
is transparent for the final user as the signatures can be
computed in parallel to other tasks. However, using RSA
keys may significantly reduce the maximum throughput the
server can reach and increment the CPU usage considerably.
Therefore, RSA keys have a greater chance of having an
impact on the page serving time. The results obtained for
ECDSA P-256 on the publisher’s signature times are also
valid for Ads.cert as it uses the same curve.

B. PERFORMANCE AT PROGRAMMATIC PLATFORMS
To measure the impact of Ads.chain in the ad delivery process
in programmatic platforms, we consider the case of the
SSP in our lab prototype. We characterize this impact by
analyzing the overall additional delay and the increment in
usage of the server hardware resources. The results for other
platforms are expected to be similar to those reported below.
We consider the cases where both the publisher and the SSP
use the same key type, either RSA 2048 or ECDSA P-256.

We run one experiment per collected metric for each
configuration of requests’ throughput, server capacity (4 and
8 vcpus)10, and key type. As in the case of the publisher,
we use wrk to generate the requests and pidstat to monitor
the resources’ usage. The tests duration is 1 minute, and a
script checks the responses returned by the server include the

10This can be considered household commodity hardware. It is expected
that stakeholders in the online advertising industry use significantly more
powerful hardware infrastructures.
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FIGURE 9. Processing time at the SSP for the different operations of Ads.chain.

ad URL. We deployed the AdX and DSP in servers of 16
vcpus and let the regular flow of ad transaction’s messages
to happen to replicate the load of a real process in our
measurements at the SSP.

We consider different load scenarios ranging between 100
and 700 requests per second, which are equivalent to 8.6 M
and 60 M ad requests per day, respectively.11 The increment
on CPU usage when using Ads.chain compared to the opera-
tion without it is below 15 % in all cases, as shown in Fig. 8.
The impact in CPU usage is, in general, not significant with
ECDSA and shows more variability with RSA. The error rate
measured at the client is below 1.6 % in all the tests, and there
is no impact in terms of memory usage.

Then, we computed the delays associated with the dif-
ferent Ads.chain’s operations: retrieving the public key of
the previous entity (generally from a local cache), verifying
the publisher’s signature, and signing a new block. Fig. 9
shows the delays for these operations at different percentiles
for representative throughputs. Our experiments report better
results for the 700 requests/s rate compared to other less
demanding rates at the 99th percentile. This indicates that the
number of requests with unusually high operation times does
not increase with throughput saturation and, instead, depends
on the specific load conditions of the server in the specific
conducted experiments. Table 2 summarizes the overall de-
lays (considering all the Ads.chain’s operations run by the
SSP) for the different configurations. When the SSP uses
the ECDSA P-256 keys, the overall delay is below 1.4 ms
and 4.4 ms at the 95th and 99th percentiles, respectively.
With RSA, despite having faster verification times, the slower
performance for signing makes the overall delay higher than

11We limit our experiments to 700 requests per second since with the
considered servers capacities the throughput returned by the SSP could not
match a rate of 800 ad transactions per second.

TABLE 2. Overall Ads.chain delays at the SSP per ad transaction in the
different experiment configurations.

time (ms) RSA 2048 ECDSA P-256
min mean max min mean max

90th percentile 1.9 2.9 3.7 0.5 0.7 0.8
95th percentile 2.2 3.9 5.1 0.5 1.0 1.4
99th percentile 3.7 8.7 14.4 0.8 2.6 4.4

with ECDSA in all the cases.
Based on these results, we conclude that Ads.chain can be

implemented by programmatic advertising platforms with a
negligible impact on resources usage and delay when using
ECDSA keys of the curve NIST P-256. However, using
RSA keys at several steps of the ad transaction increases the
chances of affecting the overall ad delivery delay.

VI. CONCLUSION
In this paper we present Ads.chain, a protocol that provides
end-to-end traceability of individual ad transactions. It offers
the required scalability to operate in the current online adver-
tising ecosystem. Moreover, it uses de-facto standard tech-
nologies (ad-tags and OpenRTB), guaranteeing an easy and
seamless integration in the current programmatic ecosystem.

Ads.chain extends the current effort of the IAB in pro-
viding traceability in online advertising through the Ads.txt
and Ads.cert solutions. Ads.chain addresses the limitations
of these techniques and provides (to the best of the authors’
knowledge) the first solution meeting the goal pursued by
the IAB’s efforts to provide end-to-end traceability to ad
transactions.

We demonstrate through extensive lab experiments that
the impact of Ads.chain in the end-user experience browsing
webpages and the operation of online advertising intermedi-
aries is expected to be negligible. Our implementation using
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OpenSSL shows better performance with ECDSA, using the
curve NIST P-256 (specified for Ads.cert), than with RSA
and a key size of 2048 bits. Therefore, although the protocol
is independent of the digital signature algorithm used by each
entity, we recommend using ECDSA P-256 to ensure there is
no additional delay in the ad delivery process.

Ads.chain code, as well as the additional code used for its
evaluation, are publicly available. We encourage the research
community and industry to provide feedback that helps to
improve our solution and to conduct further measurements
related to its performance. Our current effort focuses on
finding interested stakeholders from the online advertising
industry to conduct trials in real systems. Additionally, we
will work on the definition of scalable auditing systems
that automatically analyze the signature chains generated by
Ads.chain to identify misbehaving entities.
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