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Abstract—Packet measurements are essential for several appli-
cations, such as cyber-security, accounting and troubleshooting.
They, however, threaten privacy by exposing sensitive informa-
tion. Anonymization has been the answer to this challenge, i.e.,
replacing sensitive information by obfuscated copies. Anonymiza-
tion of packet traces, however, comes with some drawbacks.
First, it reduces the value of data. Second, it requires to consider
diverse protocols because information may leak from many non-
encrypted fields. Third, it must be performed at high speeds
directly at the monitor, to prevent private data from leaking,
calling for real-time solutions.

We present α-MON, a flexible tool for privacy-preserving
packet monitoring. It replicates input packet streams to different
consumers while anonymizing values according to flexible policies
that cover all protocol layers. Beside classic anonymization
mechanisms such as IP address obfuscation, α-MON supports
α-anonymization, a novel solution to obfuscate values that can
be uniquely traced back to limited sets of users. Differently
from classic anonymization approaches, α-anonymity works on a
streaming fashion, with zero delay, operating at high-speed links
on a packet-by-packet basis. We evaluate α-MON performance
using packet traces collected from an ISP network. Results show
that it enables α-anonymity in real-time. α-MON is available to
the community as an open-source project.

Index Terms—Anonymization, Passive Measurements, Traffic
Monitoring, Privacy

I. INTRODUCTION

Passive measurements collected from networks are funda-

mental to the well-functioning of the Internet. They are widely

used to support applications such as cyber-security and traffic

management. Packets flowing on network links are either

saved as full-packet traces or processed on-the-fly to generate

traffic summaries. Network packets however carry sensitive

information about users. For example, HTTP, TLS and DNS

traffic exposes names of services contacted by users, which

in turn can be used to build users’ profiles [1], [2]. Network

measurements thus expose privacy-sensitive information and

must be performed with care to avoid threatening users’

privacy [3]. New privacy regulations (e.g., GDPR [4]) aim

at protecting users’ privacy by imposing strict rules when

handling sensitive information. They provide the interested

parties rights and assign powers to the regulators to enforce

these rights. Network measurements must be treated in the

light of these regulations, and technology must guarantee that

sensitive information is not collected unless needed.

The solution to these problems has been anonymiza-

tion – i.e., replacing sensitive values by obfuscated copies.

Anonymization is usually done in a per-field fashion. However,

different network protocol fields represent different privacy

threats. Client IP addresses are identifiers, i.e., they allow one

to immediately identify the users (devices) generating traffic.

As such, they must always be obfuscated. The classic ap-

proach is CryptoPAN [5], a method that replaces IP addresses

by pseudo-encrypted copies while maintaining the network

prefixes. Other protocol fields, while not carring identifiers,

still allow user reidentification, thus acting as quasi-identifiers.

Server IP addresses and server names (e.g., in HTTP or TLS)

are examples of quasi-identifiers. They give hints about users’

interests and in some cases allow user re-identification. Quasi-

identifiers therefore shall be obfuscated too.

Replacing all identifiers and quasi-identifiers in traffic mea-

surements by obfuscated copies, however, reduces substan-

tially the value of the traces. Taking again server names as

an example, popular names (e.g., www.facebook.com or

www.google.com) bring little information to uncover any

specific user. Yet, being able to associate traffic to partic-

ular servers is instrumental, e.g., for network management,

accounting and dimensioning.

Anonymization techniques like k-anonymity [6] can handle

quasi-identifiers – i.e., obfuscating only values that allow user

reidentification. These approaches however work with batches
of data. They assume to have access to the complete dataset

for processing and removing any combination of rare quasi-

identifiers. In our scenario packets arrive at very high speeds

and must be processed and forwarded online with minimum

delay. Storing traces for posterior offline anonymization is not

a viable option.

Here we present α-MON, a flexible and modular tool to

anonymize network packets in a streaming fashion, with zero

delay. α-MON acts as an anonymization device. It receives

packets from the network, anonymizes them in real-time, and

immediately outputs packets to multiple consumers.

α-MON follows a novel approach to anonymize packets on-

the-fly. To this end, we introduce α-anonymity, a mechanism

inspired by the k-anonymization principles. When observing

a value in a data stream, α-anonymization removes it if less

than α users share the value in the past ΔT time interval.

Performing such fine-grained α-anonymity online requires

ingenuity. Differently from k-anonymity [6], we work in a

packet-by-packet basis. α-MON implements a scalable and

parallelizable solution for achieving α-anonymity, in addition

to supporting classic anonymization techniques.

We evaluate α-MON performance on Common-Off-The-

Shelf (COTS) hardware with traces collected from operational

networks. We show that: (i) α-MON protects sensitive data

via α-anonymity, thus preventing the disclosure of quasi-
identifiers uniquely associated with fewer than α users; (ii)
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Fig. 1: α-anonymity concept. Three users access the domain

private.com over time. When less than α = 3 unique

users’ are seen in the past ΔT , requests must be anonymized.

α-MON allows most information that would be obfuscated by

a strict per-field anonymization to be exported, thus generating

richer traces than alternatives; (iii) α-MON scales to tens of

Gbit/s with zero packet loss using few cores. In pessimistic

scenarios, it easily achieves several Gbit/s too. Finally, α-MON

is publicly available as an open-source project1.

The paper is organized as follows. Section II defines α-
anonymity and shows its impact on traffic measurements.

Section III describes α-MON architecture, design and imple-

mentation. Section IV benchmarks α-MON performance and

shows how to tune its parameters. Section V and Section VI

discuss the α-anonymity approach and α-MON in the perspec-

tive of related work. Finally, Section VII concludes the paper.

II. α-ANONYMITY

The drastic increase in the rate at which personal data

are collected pushed researchers to propose techniques to

anonymize data. The goal of anonymization is to avoid dis-

closing personal information without compromising the utility

of datasets. The seminal work of Samarati et al. proposes

the k-anonymity property [6], [7]. It aims at preventing the

reidentification of individuals or the extraction of sensitive

information about them by ensuring that at least k individuals

share the same properties in the dataset. k-anonimity has been

extended with the l-diversity [8] and t-closeness [9] ideas,

which we will discuss in Section V.

With α-MON, we want to obtain a similar effect, avoiding

the exposure of sensitive information in network measure-

ments without sacrificing their usefulness. To this end, we here

introduce α-anonymity.

A. α-anonymity definitions

Standard approaches to achieve k-anonymity are not appli-

cable to traffic measurements as they require the availability

of the entire dataset at the anonymization time. We lie in a

scenario where anonymization must be performed in real-time

with zero delay and must scale up to multi-Gbit/s streams. As

1https://smartdata.polito.it/alpha-mon-anonymized-passive-traffic-monitoring/

such, we cannot assume to have the whole dataset at disposal

for anonymization.

Here, we propose a novel concept of anonymity for traffic

measurements. We call it α-anonymity. It targets real-time,

online processing, with minimum latency. Data-subjects (i.e.,

users) are identified by an identifier. The most common

identifier in network traces are client IP addresses2.

Quasi-identifiers are attributes whose values must be con-

trolled, as they may help to reidentify data-subjects. In our

case, quasi-identifiers are fields present in protocol headers

and payload that may be associated with a small group of data

subjects. Examples include server IP addresses, server names

present in payloads (e.g., in DNS) and user-agent strings

(e.g., in HTTP requests or QUIC handshakes). α-anonymity
obfuscates rare values of quasi-identifiers, preventing attacks

against data-subjects’ privacy. We introduce the definition of

α-private quasi-identifier.

Definition 1. An α-private quasi-identifier is a value observed

at time t, which is associated with less than α data-subjects

in the past ΔT time interval.

If the anonymized dataset hides α-private quasi-identifiers,

it achieves α-anonymity.

Definition 2. A stream of packets is α− anonymized if all

α-private quasi-identifiers are obfuscated, given α and ΔT .

In other words, if a quasi-identifier has been observed by at

most α-1 data-subjects in ΔT , we obfuscate it. By adjusting

parameters α and ΔT , it is possible to regulate the trade-off

between data utility and privacy. Indeed, a large α results in

the majority of values to be anonymized, while a small α
allows rare values to be exposed. ΔT regulates the memory

of the system.

We exemplify the idea of α-anonymity in Figure 1.

Here the quasi-identifiers are the domain names found in

packet payloads. Suppose different users access the website

private.com. Let α = 3. The first four accesses shall

be obfuscated as only two users accessed the website up to

then. When we observe User3’s request, we have 3 users that

have accessed private.com in the current ΔT . Thus, we

allow User3’s request to pass without anonymization. Notice

that, in this case, exposing private.com does not uncover

User3, as attackers cannot even know who the other two

users are. After some time User2 accesses the domain again.

The previous entry for User1 is no longer in the current ΔT
window, and private.com is anonymized again.

Clearly, in the above example, popular websites and services

would be accessed by several users. Their names would not

be anonymized. Rare domain names that could bring specific

information about users would likely be anonymized. Next,

we show an example to illustrate the impact of α-anonymity
on the quality of exported data.

2α-anonymity can handle any protocol field as an identifier.
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Fig. 2: Fraction of traffic obfuscated by α-anonymity with different values of α and ΔT .
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Fig. 3: Domains known by α-anonymity with different ΔT .

B. The case of network packet traces

To exemplify the effect of α-anonymity on real packet traces

we consider a case where the Fully-Qualified Domain Names

or domains in brief present in TLS, DNS, and HTTP are our

quasi-identifiers. Client IP addresses are used as identifiers.

We consider a traffic trace collected on an operational network

including more than 8 000 users who generate several millions

of packets per second of traffic.

We analyze the fraction of traffic that α-anonymity would

obfuscate when considering different values for α and ΔT .

We show results in Figure 2. First, consider the fraction of

domains that α-anonymity would obfuscate in Figure 2a. We

notice that α = 2 already causes ≈ 75% of the domains to be

obfuscated. When α = 10, the fraction increases to 90%. ΔT
has a small overall impact.

Different is the picture if we consider the number of flows

(Figure 2b) and the byte-wise volume (Figure 2c) carried by

flows for which the domains gets obfuscated. With α = 2,

α-anonymity obfuscates the domains in only 10% of flows,

which account for ≈ 25 % of the traffic volume.3 This is

3Most of the obfuscated domains are names used by CDNs that include
hashes or random strings as top-level domain names. Taking instead the
second-level domains (example.com instead of www.example.com) as
quasi-identifiers would reduce the percentage of obfuscated bytes to negligible
numbers for α = 2.

caused by the nature of Internet traffic, where the majority of

flows are directed towards a limited set of services [10]. The

impact of a large ΔT is more pronounced for high values of

α, allowing a larger number of flows to avoid obfuscation. For

example, if we set α = 100, a ΔT = 30min results in 60% of

flows to be deprived of their domains; this fraction decreases

to 52 (46)% if we set ΔT = 1h (2h). In a nut shell, popular

domains that carry little sensitive information are responsible

for the majority of traffic. Letting their name in clear poses

no challenges for privacy, while it offers great visibility to

network monitors.

An important question for practically implementing α-
anonymity is the number of values for quasi-identifiers that

α-anonymity has to track over time. This is fundamental to

quantify its memory footprint and correctly size internal data

structures (see Section III-D) as well as the ΔT parameter. For

each quasi-identifier, indeed, we need to track the number of

users associated with each possible value for the given quasi-

identifier in the last ΔT window.

Taking again domains as an example, we consider the size of

the domain set that α-anonymity must track – i.e., those active

domains observed in the last ΔT interval. Figure 3 depicts

results over time for our trace, considering three possible

values for ΔT . After a short warm-up phase (not visible at

this scale), the curves follow the daily trend of network usage.

We observe a peak during evenings, when ≈ 150 000 unique

domains are seen in a two-hour interval (solid red line). No

more than 100 000 (60 000) unique domains appear with a ΔT
of 1 hour (30 minutes). During the night, when traffic reduces,

the number of active domains is more than halved. We observe

a sudden peak on the evening of the third day (a Friday) with

almost 200 000 unique domains accessed in two hours.

Recall that the above experiments refer to a traffic trace

from a population of 8 000 users. However, given the nature of

Internet traffic, where most flows are directed to few services,

the set of accessed domain names scales sublinearly with

the number of users. For example, during the peak hour,

1 000 (3 000) randomly selected users already contact 35 000
(60 000) domains, while all 8 000 users ≈ 150 000.
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Fig. 4: Deployment scenario: α-MON anonymizes the traffic
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III. α-MON DESIGN

We now describe α-MON, covering requirements, design

choices, and implementation, with a special focus on the data

structures used to perform α-anonymity at high-speeds.

A. Deployment scenario and requirements

Figure 4 shows the deployment scenario. α-MON operates

as a classic network monitor, receiving packets from one or

multiple network links, either by means of span ports or optical

splitters. To allow legacy applications to coexist, α-MON is

deployed in front of them and forward anonymized packets

to multiple consumers. Compatible with best-practices for

privacy, α-MON performs different anonymization according

to the consumer, thus passing on the minimal information

required by each legacy application.

α-MON must be flexible and support a rich set of function-

alities. It shall satisfy the following requirements:

1) It must support α-anonymity to hide private quasi-

identifiers with custom α and ΔT ;

2) It must support a flexible set of anonymization policies,

covering all protocol layers;

3) It must be scalable and deployable in high-speed links,

handling multiple tens of Gbit/s with no packet loss;

4) It must support multiple legacy applications with differ-

ent anonymization requirements.

B. Packet ingestion and forwarding design

α-MON runs on a COTS server and receives packets from

several network interfaces. For efficiency, we implement it

in C language. For packet capture, we rely on the Data

Plane Development Kit (DPDK) [11], a set of libraries and

drivers for fast packet processing. α-MON follows a multi-

threaded design and can take advantage of all cores available

in a server. We use the architecture proposed by the authors

of [12], in which the incoming packets are load-balanced to

different threads – one per CPU core – using the Receive

Side Scaling (RSS) feature of modern network cards. Each

network interface implements load-balancing algorithms so

that incoming packets are spread to multiple queues based on

hash functions. This mechanism allows fast and scalable load

balancing in hardware and avoids wasting CPU resources.

Some of the α-MON anonymization capabilities require

stateful per-flow processing and mandate data structures to

keep track of the status of TCP and UDP flows.4 To avoid

expensive synchronizations, network interfaces load-balance

packets in a consistent per-flow fashion. In other words,

packets belonging to the same flow are always processed by

the same thread. We reach this goal instrumenting the network

interface with a specific RSS hash seed [13].

Each thread receives a fraction of the overall traffic. Accord-

ing to custom-defined configurations, packets are replicated,

their payloads are anonymized and, finally, they are forwarded

to output interface(s) connected to the legacy monitors. To

avoid concurrent access to network interfaces, α-MON sets up

a transmitting queue dedicated to each thread on each network

interface, again using the DPDK functionalities.

C. Anonymization modules

We design α-MON to be modular and flexible. As such,

the anonymization functions are functions that build a pro-

cessing pipeline. This approach eases the configuration of

anonymization policies and allows new modules to be inte-

grated into the system with little effort. α-MON supports mul-

tiple configurations, which differ, e.g., for encryption keys and

anonymization pipeline. α-MON takes care of making copies

of packets and performs the desired steps on each pipeline

before forwarding packets to a consumer. This design allows

deployments in which different consumers require different

anonymization policies, e.g., security monitors that receive

original packets, while passive monitors that receive fully-

anonymized packets.

Currently, α-MON implements the following modules to

search and anonymize identifiers and quasi-identifiers con-

tained in the traffic:

Layers 5-7: The key novelty of α-MON resides in the

mechanisms for handling quasi-identifiers in application-layer

protocols. α-MON implements a classification engine based

on Deep Packet Inspection to identify popular protocols. In

its current implementation, α-MON supports quasi-identifiers

contained in TLS, DNS, and HTTP protocols. In particular,

α-MON handles server domain names. However, any field of

these protocol headers could be subjected to α-anonymity, with

customized α and ΔT parameters. Alternatively, the fields can

be obfuscated by default (i.e., treated as an identifier).

Layer 4: α-MON keeps a table to track TCP and UDP

flows, allowing per-flow anonymization policies. Tracking

flows is fundamental for consistent layer 5-7 anonymization.

α-MON currently does not modify L4-headers, but one could

easily implement a mechanism for obfuscating potentially

sensitive L4 information (e.g., rarely used TCP options).

4We define a flow by the usual 5-tuple.
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Fig. 5: Data structure used to handle quasi-identifiers.

Layer 3: α-MON considers client IP addresses as identi-

fiers and anonymize them using the CryptoPan algorithm [14],

[5]. CryptoPan encryption keys can be static or randomly ro-

tated at fixed time intervals. α-MON allows the administrator

to restrict the addresses that undergo anonymization to specific

subnets, e.g., targeting only IP addresses of clients in the

administered network. It supports IPv4 and IPv6.

IP addresses that are not identifiers (e.g., server IP ad-

dresses) can be treated as quasi-identifiers and undergo to α-
anonymity too.

Layer 2: α-MON supports the removal of MAC ad-

dresses. Alternatively, as MAC addresses are generally mod-

ified by routers once they forward the packets, α-MON can

store a timestamp in place of the MAC headers. This mech-

anism allows consumers to get timestamps of the moment

packets entered α-MON, thus increasing the precision.

Finally, α-MON implements a default policy to completely

drop the payload of specific/unknown protocols at any layer

– e.g., forwarding only anonymized L3 or L4 headers to

consumers, while removing L5-7 payloads.

D. α-anonymity implementation and data structures

We now describe the data structures used to implement

traffic anonymization at tens of Gbit/s. To reach high speeds,

it is necessary to carefully design suitable data structures that

avoid expensive global synchronizations. We focus on the most

challenging data structures.

α-MON includes a dedicated module for α-anonymity.

When processing a packet from a data subject identified by

ID and containing a quasi-identifier, the value of the quasi-

identifier (QuasiID) must be evaluated. α-MON must decide

whether to keep QuasiID or hide it. The decision is based

on the counter Cnt(QuasiID) of data subjects sharing the

QuasiID in the time window ΔT .

To keep track of these counters, we rely on the specifically

designed data structure depicted by Figure 5. The data struc-

ture must be shared between all threads. Therefore, α-MON

needs to handle concurrent accesses, which is a potentially

expensive operation. Its core is composed of a shared hash

table Hash(QuasiID), in which each bucket is protected by a

Mutex lock to handle concurrent accesses. A list handles hash

collisions, organized as a Least Recently Used (LRU) structure

for efficiency – QuasiID-LRU in the figure. Each entry in

the LRU contains the information related to a quasi-identifier

value (QuasiID). Beside metadata, it contains a second LRU,

the ID-LRU list, that stores the ordered set of data subjects

sharing the QuasiID, along with the timestamp of respective

last occurrence. This ID-LRU is instrumental to remove those

ID whose occurrences happened more than ΔT time ago.
The metadata for QuasiID contains pointers to both head

and tail of the ID-LRU (illustrated by orange arrows), the old-

est timestamp at which QuasiID has been observed and the

counter of unique IDs currently active. A second inner hash

table guarantees O(1) access to ID-LRU elements (illustrated

by blue arrows) using the ID as key in Hash(ID).
When a α-MON thread has to decide whether to anonymize

or not the quasi-identifier value QuasiID, it first accesses

the hash table Hash(Quasi-ID). If QuasiID is empty, the

corresponding entry is created; otherwise α-MON looks for

QuasiID through the collision list. Once found (or newly

created), α-MON updates the QuasiID-LRU of the collision

list, moving the current item to the top. Next, it updates

the corresponding metadata for the QuasiID. Specifically,

α-MON checks if the data subject ID is already listed among

those that share QuasiID in the past ΔT window. If such

ID is present, its timestamp is updated to the current time.

If not, the new ID is added to the ID-LRU, and the counter

Cnt(QuasiID) of data subjects sharing QuasiID is increased.
Next, we need to purge subjects that shared QuasiID more

than ΔT time ago. α-MON goes through the bottom of the

ID-LRU backwards checking the timestamp for each entry:

if the time difference with the current time exceeds ΔT , the

entry is evicted. The Cnt(QuasiID) is decreased consequently.

Similarly, α-MON periodically scans all QuasiIDs in the

hash bucket to delete those that are no longer in use.
At last, α-MON decides whether to anonymize QuasiID

based on the counter of the number of active data subjects.

If it is smaller than α, α-MON replaces the quasi-identifier

value with random bytes.
Note that α-MON is able to perform most operations in

O(1) for each packet, thanks to the two hash tables used

to access quasi-identifier values and per-identifier counters.

This design allows high processing speeds as we will show

in Section IV-B.

E. Auxiliary data structures
α-MON implements efficient structures to support per-

flow management. This is instrumental to apply consistent

anonymization decisions based on flow state – e.g., to remove

the payload of specific protocols (e.g., HTTP) or to parse ap-

plication layer protocols whose fields are split across multiple

packets. The data structure for active flows follows the same

ideas used by the authors of [15]. It builds on a hash-based data

structure that provides O(1) accesses to the per-flow metadata.

IV. EXPERIMENTAL RESULTS

We now evaluate the performance of α-MON. We aim at

evaluating how α-MON performance scales with the number

14
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Flows (M) Flows per-class (%) Pktsize

Trace TCP UDP HTTP HTTPS P2P oth avg

ISP-FULL 3.08 7.76 10.8 8.2 46.2 34.7 716

ISP-HDR 3.08 7.76 - - - - 54

DNS - 14.07 - - - 100 172

TABLE I: Packet traces.

of cores and the impact of different conditions and workloads.

We follow the procedures defined in [16] for throughput tests.

A. Testbed and dataset

We instrument a simple testbed composed of a Traffic

Generator (TG) and a Device Under Test (DUT). TG and DUT

are each equipped with two quad-port Intel X710 10 Gbit/s

network cards, which are directly connected. TG replays traffic

traces stored in pcap format, sending packets to DUT over

a first set of 10 Gbit/s links. The DUT runs α-MON to

anonymize network traffic that is sent back to the TG over

a second set of 10 Gbit/s links.

DUT is a high-end server equipped with 4 Intel Xeon Gold

6140M processors and 512 GB of memory. The total number

of physical cores is 72. We disabled hyperthreading to isolate

α-MON performance when varying the number of cores.

The TG is a medium-sized server with no particular require-

ment except for a large amount of memory. Indeed, it is not

trivial to read and send stored traffic traces at tens of Gbit/s

with commercial solid-state drives whose read speed is in the

order of 4-5 Gbit/s. As such, we equipped the TG with 1 TB of

RAM so that it can fit large traces in memory. We use DPDK-

Replay to replay the traces on the selected network interfaces

at the desired rate.5 DPDK-Replay is able to loop over traces

in memory, eventually replacing IP addresses on each pass, so

to allow arbitrary benchmark duration.

We perform experiments using real traffic traces collected

from an operational network (see Table I). Packets are captured

by instrumenting a Point-of-Presence of a European Internet

Service Provider (ISP) that aggregates the traffic of about 8 000
households. We capture raw packets using a passive probe

equipped with several high-end SSD disks.

For the first benchmarks, we use a 1-hour long trace

captured at peak time. We obtain a 575 GB of packets that

we call ISP-FULL. It contains 3.1 M TCP and 7.7 M UDP

flows, with an average packet size of 716 B, for more than

800 M packets. This trace represents the typical workload that

α-MON would face in an ISP network.

We process this trace to keep only up to TCP/UDP headers,

removing payloads. This step results in a second packet trace

– called ISP-HDR– in which packets are truncated to 54 B

on average. We use this trace to benchmark the per-packet

capture, processing and transmission speed of α-MON in a

pessimist scenario composed by lots of small packets.

At last, we collect DNS traffic from the same network for

one day. We use this trace to benchmark the α-anonymity

5https://github.com/marty90/DPDK-Replay
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Fig. 6: Performance with four input and four output interfaces

using the ISP-FULL trace.

module since each packet likely contains a quasi-ID, e.g., a

domain name. This trace is 7.23 GB large, with more than 1 M

packets. We call it DNS trace.

For each experiment, we seek the throughput [16], i.e., the

fastest rate at which the count of frames transmitted by the

DUT is equal to the number of frames sent by the TG. We pro-

gressively increase the TG sending rate using a binary search

process. As we increase speeds, benchmarks require the TG to

perform multiple passes on the original traces. All experiments

are performed with α = 10 and ΔT = 60s. Each benchmark

lasts 3 minutes. We set the hash table Hash(QuasiID) size to

100 000 entries to maintain collision lists reasonably short (cfr.

Figure 3).

B. Horizontal scalability

We first focus on α-MON horizontal scalability to un-

derstand how its throughput increases with the number of

cores. Recall that each core manages an α-MON thread via

DPDK. TG sends traffic to DUT using four 10 Gbit/s links.

The DUT must anonymize packets before forwarding them

on four output links. For each input interface, we configure

one output feed on a dedicated output interface, thus, avoiding

duplicating packets. Thanks to RSS load balancing, each of

the N cores processes an average 1/N of the traffic from

each input interface – 4/N in total, given we use 4 input

interfaces. This load-balancing scheme makes the throughput

depend only on the aggregate incoming rate, regardless of the

rates of single input interfaces. We employ the ISP-FULL trace

for this experiment.

We report results in Figure 6, which shows the throughput

versus numbers of cores. When α-MON runs on a single core,

it handles around 10 Gbit/s. In our experiments, the throughput

is equivalent if packets come from a single input link at line

rate or if they are spread on the four interfaces. With two

cores, α-MON sustains 18 Gbit/s, and the performance scales

linearly with additional cores, reaching 38 Gbit/s on four cores.

With just five cores α-MON fully sustains 40 Gbit/s – i.e., all

input interfaces at line rate. Unfortunately, our testbed does

not allow higher rates due to the limited number of network

interfaces, but we expect the performance to further increase
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Fig. 7: Performance with different traces and consumer numbers.

before hitting the PCI bus bandwidth limit [17]. We leave the

study of this scenario for future work.

In summary, α-MON sustains ≈ 10Gbit/s per-core on a

realistic traffic trace. Its performance scales to up 40Gbit/s

when using just five CPU cores, reaching line rate on all four

input links.

C. Benchmark with other workloads

We next evaluate α-MON performance under different

workloads. We vary both the input traffic mixture and the

number of consumers. In these experiments, the TG sends

packets to the DUT using a single 10 Gbit/s link. We configure

α-MON with one, two, or four output feeds, each of them

anonymized using all available modules, but with different

encryption keys. As such, α-MON not only has to make packet

copies, but also performs all anonymization steps multiple

times, thus simulating a case in which each consumer receives

differently-customized traffic.

Recall that different traffic classes trigger different α-MON

modules, resulting in performance variations. While the ISP-

FULL trace is a typical workload that α-MON could face at an

edge network, DNS represents an extreme scenario in which

every packet triggers the α-anonymity module. ISP-HDR is a

second extreme scenario since all packets are small. It should

not be observed in practice except for anomalous situations,

e.g., during cyber attacks. ISP-HDR stresses α-MON packet

replication capability toward multiple consumers as well as

L2-L4 anonymization modules.

We show results in Figure 7. We report throughput for

different traffic traces in separate figures, where different lines

indicate the number of output feeds. X-axes show the number

of cores.

Figure 7a shows performance with the ISP-FULL trace.

As already observed in the previous section, a single core

sustains 10 Gbit/s with a single consumer (solid red line). The

performance is reduced when α-MON has to feed multiple

consumers. For a single CPU core (leftmost points), the

throughput is reduced to 4 Gbit/s with two consumers (dashed

blue line) and 2.4 Gbit/s with four consumers (dashed green

line). The extra load imposed by the need for duplicating

packets causes this degradation. Recall that DPDK allows

zero-copy processing only when single output is required.

Here, α-MON needs 3 cores to feed 2 consumers with

10 Gbit/s each, and 6 cores to feed 4 consumers. Note also

how the throughput scales linearly with the number of cores

in all cases. Again, contention on the Hasd(QuasiID) has little

impact.

Next, we use the ISP-HDR trace to stress α-MON packet

copying, processing and forwarding. Whereas the TG sends

out 1.7 million packets per second (Mpps) when replaying the

ISP-FULL trace at 10 Gbit/s, ISP-HDR results in 23 Mpps.

α-MON throughput naturally decreases. A single core handles

no more than 2 Gbit/s in this scenario (Figure 7b - red curve).

However, thanks to the scalable architecture based on RSS,

α-MON throughput increases linearly with the number of

cores – and 5 cores handle 10 Gbit/s when outputting traffic to

a single consumer (red line). Similar to the previous scenario,

the throughput is reduced when having multiple consumers

(blue and green lines). A single core can sustain 1 (0.7) Gbit/s

of the ISP-HDR trace with 2 (4) consumers. Yet, throughput

continues to grow linearly with the number of cores. As such, a

proper resource provisioning would allow α-MON to perform

its tasks without loss also in these scenarios.

Next, we consider the DNS trace to stress the α-anonymity
module. In Figure 7c we see that throughput further decreases.

Remind that packets undergoing α-anonymity generate updates

on various data structures to track the set of data subjects as-

sociated with each quasi-identifier value. Figure 7c shows that

a single core sustains 0.6 Gbit/s with one output feed. Again,

the throughput increases almost linearly with the number of

cores, and eight cores can handle 3 Gbit/s of pure DNS traffic.

Here too, α-MON incurs a penalty for the packet copying in

case of multiple consumers. The slightly sublinear scalability

is due to the Mutex locking on the Hash(QuasiID) which slows

down processing when a large number of cores are used.

In summary, α-MON can process 10 Gbit/s of typical ISP

traffic with one core. Additional output feeds bring extra costs

due to packet copying. A handful of cores allows achieving

line rate in different scenarios. Worst-case scenarios, such as

pure DNS traffic and millions of packets without payload,

require a proper dimensioning of the system. Still, α-MON
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performance scales linearly with the number of cores in all

scenarios.

V. DISCUSSION ON THE α-ANONYMITY APPROACH

α-anonymity represents a new proposal for anonymizing

the sensitive information contained in network traffic. It

shares with k-anonymity, l-diversity and t-closeness the idea

that uncommon quasi-identifiers must be hidden to prevent

users’ re-identification. No scheme can provide a guarantee

of anonymity, and all scheme trade privacy with utility [18].

Indeed, publishing any data results in a potential privacy

loss for individuals, and any anonymization technique makes

data imprecise, causing losses in potential utility. At last,

efficient algorithms that provide anonymized data with such

properties [19] are not well-fit for real-time and online usage as

they make decisions based on the global distribution of quasi-

identifiers. Like alternative approaches, α-anonymity does not

offer guarantees of zero privacy loss, but allows tuning the

desired trade-off between privacy and data utility.

With α-anonymity, we propose a novel anonymization prop-

erty that can be achieved in real-time and in an online fashion.

As such it is well-suited for network traffic anonymization.

Unfortunately, k-anonymity and similar approaches work on

tabular data where the entire database (or a batch of data) of

entries are readily available. We instead want to anonymize

a continuous stream of data and output the results in real-

time. Notice that this differs from k-anonymity over data

streams [20] - i.e., a system capable of applying k-anonymity
on a stream database, where windows of data are considered.

Such an approach is not applicable to our context, since we

do not want to buffer data in windows, but we want to make

the decision on a per-datum basis. Every decision has to be

made in an atomic fashion, and the processed datum must be

immediately available for later processing. α-anonymity does

not require to buffer data and scales very efficiently. As such

it is suitable for real-time deployments.

In α-anonymity, the first α− 1 data subjects appearing in a

ΔT - would have their quasi-identifier values removed, while

the α-th subject would be the first one to have it visible. Yet

- he/she belongs to a set of at least α data subjects - those

α − 1 be unknown. In a k-anonymity approach, all α quasi-

identifiers would be made visible. In this sense, α-anonymity
reduces the visibility of quasi-identifiers in the output stream.

VI. RELATED WORK

Passive network monitoring threats users’ privacy [21].

Because of that, we witness significant efforts to prevent infor-

mation leakage from the network, and these efforts have been

mostly centered around the deployment of encryption [22],

[23]. For example, all newest web protocols by the time of

writing (e.g., QUIC and HTTP/2) are built to run seamlessly

over TLS. These initiatives reduce the amount of information

exposed during the monitoring [24]. However, users’ privacy

can still be exposed in certain fields of Internet protocols.

Server IP addresses and domains are two prominent examples,

which may leak the sites visited by users. As such, those

must be considered quasi-identifiers. Recent initiatives aim at

encrypting plain-text domains seen in traffic, e.g., encrypting

DNS [25] and Server Name Indications (SNIs) in TLS [26].

However, not all users will adopt these technologies any soon.

In any case, those who monitor the network for legitimate

reasons must also protect the privacy of all users, as mandated

by regulations [4].

Several works propose techniques to anonymize traffic by

obfuscating fields of protocol headers. The goal is to allow

accurate network monitoring without threatening users’ pri-

vacy. We can roughly group these techniques into (i) address

anonymization and (ii) payload anonymization.

Address Anonymization: The simplest approach to

achieve anonymization of IP addresses is the truncation of

addresses. Everything, but the first n bits of the addresses

(typically 8, 16 or 24), are set to zero. Truncation only partly

mitigates the problem, as it is still possible to determine

the subnet or the organization the truncated addresses belong

to. More sophisticated techniques propose a prefix-preserving

pseudo-anonymization, in which addresses are completely

shuffled, but preserving the structure of subnets [27], [28],

[29]. Crypto-PAN is perhaps one of the most popular prefix-

preserving algorithms for IP addresses anonymization [14],

[5]. The mappings between the original and anonymized

addresses are determined by a passphrase and a symmetric

block cipher. Here we rely on Crypto-PAN for IP address

anonymization.

Payload Anonymization: Payload anonymization is more

complex, as personal information may leak from different and

complex protocols. Anonymization tools like TCPdPriv [30]

and TCPurify [31] truncate TCP and UDP payloads, to

remove all information contained in application layer proto-

cols. This simple “reveal nothing” policy may lead to poor

measurements. Other works propose sophisticated frameworks

to handle specific application-level protocols. The authors

of [32] remove sensitive information without affecting the

payload. Packets are reconstructed into data stream flows, and

application-level parsers modify the data streams as specified

by a policy written in a high-level language. They provide

limited anonymization primitives (constant substitution, se-

quential numbering, hashing, prefix-preserving, and adding

random noise), forcing the user to write her own functions.

The authors of [33] propose a programmable anonymization

tool based on BPF filters, allowing the user to choose different

actions according to the received protocol (IP, TCP, UDP,

ICMP, HTTP or FTP).

Differently from these approaches, we explicitly target

an operational deployment, in which anonymization must

be achieved in real-time at tens of Gbps. Inspired by k-
anonymization, we design a modular and flexible architecture

to support α-anonymity. We focus on scalability and employ

state-of-the-art packet capture techniques to make the system

deployable on high-speed networks.
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VII. CONCLUSION

We presented α-MON, a flexible and modular tool to

anonymize network traffic according to a rich set of poli-

cies. We designed α-MON to be flexible and to provide

anonymized traffic to multiple legacy monitors with different

traffic visibility requirements. A key innovation in α-MON

is the implementation of α-anonymity, a stream-based traffic

anonymization technique that obfuscates quasi-identifiers that

can be uniquely traced back to sets of data subjects. α-MON

can search for them, for example, in domain names present in

DNS, TLS and HTTP traffic.

We designed a scalable architecture and efficient data struc-

tures to implement α-anonymity at line-rate speed on multiple

10 Gbit/s links. α-MON reaches high throughput in typical

scenarios with few CPU cores. Even in worst-case scenarios

α-MON scales linearly with the number of cores, thanks to

its design based on DPDK.

α-MON is available to the community as open-source soft-

ware. Future work includes the extension of α-MON modules

to cover other protocols, the development of mechanisms to

find identifiers and quasi-identifiers in network traffic automat-

ically as well as the analysis of the impact of α-anonymity on

the operations of different legacy monitors.
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