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ABSTRACT

Data holders are increasingly seeking to protect their user’s privacy,

whilst still maximizing their ability to produce machine learning

(ML) models with high quality predictions. In this work, we empiri-

cally evaluate various implementations of differential privacy (DP),

and measure their ability to fend off real-world privacy attacks, in

addition to measuring their core goal of providing accurate clas-

sifications. We establish an evaluation framework to ensure each

of these implementations are fairly evaluated. Our selection of DP

implementations add DP noise at different positions within the

framework, either at the point of data collection/release, during

updates while training of the model, or after training by perturb-

ing learned model parameters. We evaluate each implementation

across a range of privacy budgets and datasets, each implemen-

tation providing the same mathematical privacy guarantees. By

measuring the models’ resistance to real world attacks of mem-

bership and attribute inference, and their classification accuracy.

we determine which implementations provide the most desirable

tradeoff between privacy and utility. We found that the number of

classes of a given dataset is unlikely to influence where the privacy

and utility tradeoff occurs, a counter-intuitive inference in contrast

to the known relationship of increased privacy vulnerability in

datasets with more classes. Additionally, in the scenario that high

privacy constraints are required, perturbing input training data

before applying ML modeling does not trade off as much utility, as

compared to noise added later in the ML process.
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1 INTRODUCTION

Advanced machine learning (ML) techniques enable accurate data

analytics for various application domains. This promoted the com-

mercial deployment of ML as a service (offered by data giants, such

as Google and Amazon) which allows data-driven businesses to

train models on sensitive data while offering third party (paid)

access to these models. Although commercially attractive, these

services can be vulnerable to model theft and privacy infringements

potentially not compliant with developing privacy regulations (e.g.,

EU and USA regulations such as COPPA [7] and GDPR [14], and

most recently e-Privacy [29] and CCPA [5]). In order to preserve

their models’ privacy while still maximizing their ability to produce

ML and deep learning (DL) models that have high utility for their

services, data-driven organizations are turning towards leveraging

privacy-preserving ML (PPML) techniques, building on theoretical

frameworks of Differential Privacy [10, 12] (DP) and/or Federated

Learning [22] (FL). However, differentially private PPML methods

often come with an intrinsic tradeoff between utility (e.g., as cap-

tured by accuracy of the model) and the privacy guarantees offered

by the technique applied to protect user data.

A recent initial investigation in [20] studies different DP compo-

sitions, and how these compositions can be applied to the training

of a neural network or logistic regression model. [20] reports on

the impact these privacy mechanism have on the model’s utility,

and the effectiveness of inference attacks on the resulting models.

Inspired by [20], and towards the goal of understanding the tradeoff

between privacy and utility of DP-enabled ML methods, we dive

deeper into this problem and, in this study, we set to assess how

this inherent tradeoff depends on the (1) ML method used, (2) stage

in the ML framework where the DP method is applied to protect

the data or model, and (3) complexity of training data in use with

respect to classes and attributes in the data.

We develop a comprehensive and systematic evaluation of a

DP-enabled ML framework that enables a privacy ML researcher to

study the Utility-Privacy tradeoff in depth for their data at hand. Our

objective is to allow the selection of the best performing method

yielding the highest predictive accuracy while still ensuring a solid

level of privacy protection, by studying the different stages where

DP-based noise can be applied: as an obfuscation to the input data,

duringmodel training, or at the model finalization by perturbing the

learned model parameters. Equally important, the study’s objective

is to inform privacyML researchers what privacy threshold to apply
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in their framework, and what are the privacy guarantees expected

from the selected setup, vs. the utility of the chosen ML method.

We study various recent DP implementations of classical ML

and DL methods such as Naive Bayes, and Neural Networks, and

empirically measure their ability to fend off black-box privacy at-

tacks that may be practically launched in the real-world, while also

measuring the model’s core goal of providing accurate classifica-

tions. Crucially, we establish this standard evaluation framework

to ensure each of these DP implementations are evaluated fairly.

In particular, we study and test how ML performance and pri-

vacy are impacted when DP noise is added at different stages of

the ML pipeline: Stage (1) by adding noise to the input data before

the ML/DL training phase. Stage (2) where DP noise is added dur-

ing model updates, i.e., while training the selected model. Stage

(3) after the model training is performed, by perturbing learned

model parameters. We evaluate each DP-enabled ML implementa-

tion across a range of privacy budgets, each instance providing the

same mathematical privacy guarantees. We measure different met-

rics to capture the aforementioned tradeoff: privacy offered to the

model and data (resistance to membership and attribute inference

attacks) and model utility (classification accuracy).

We use both synthetic and real-world datasets to capture the

aforementioned privacy and utility tradeoff. Our use of a synthetic

dataset enables us to isolate the effects of DP noise, stages and

dataset complexity without the influence of data distributions. How-

ever, not to discount the importance of standard real-world datasets,

we also perform our evaluation on a range of real data like CI-

FAR [23], Purchase [2], and the Netflix dataset [27] in which we

provide the same pre-processing treatment as Purchase [2].

With our experimentation, we make the following observations.

Most notably, for a given amount of model utility, applying DP

noise at stages later than the input phase permits the addition of

more DP noise, thus providing higher privacy guarantees. This

observation is consistent across all DP-ML algorithms.

When considering utility and privacy as function of the DP noise,

we identify an łinflection pointž for each function, an indicator of

where the greatest change in utility and/or privacy will occur for a

given DP-ML method. We find that this point on privacy function

is more closely related to the Utility response, and the DP-ML

method used, instead of DP privacy guarantees, as expected from

the amount of DP noise applied to the process. We demonstrate,

though common knowledge, that class complexity has an impact

on the absolute performance of a privacy attack. However, counter-

intuitively, we observe that this complexity (number of classes)

does not influence the inflection point of the utility of the privacy

function. Finally, when privacy or utility come with constraints,

we provide recommendations for best performing DP-ML method,

and their expected utility and privacy guarantees.

We contribute our open sourced framework1 for reproducibility

purposes, as well as for other researchers to build on it and study

privacy and utility thresholds of newly proposed DP-ML methods.

2 METHODOLOGY

2.1 Overview

In this Section, we provide details of the building blocks needed to

study the privacy-utility tradeoff as a comprehensive and modular

methodology. Our methodology encompasses the following:

• DP noise definitions (Sec. 2.2)

• Stages of the ML pipeline at which DP noise is added (Sec. 2.3)

• ML algorithms studied that are DP-enabled (Sec. 2.4)

• Privacy metrics, assessed with privacy attacks on data (Sec. 2.5)

• ML utility metrics (Sec. 2.6)

In this work, we provide an instantiation of this methodology

(Figure 1) to evaluate the privacy-utility tradeoff in DP-enabled ML

algorithms. Next, we cover details for each of these building blocks,

and in Section 3, we provide details of their implementation.

Note that our methodology can be extended to account for other

considerations in the privacy-utility tradeoff analysis. This could

include Resource metrics (e.g., required computational resources

for training ML models) or various datasets characteristics in use.

2.2 Differential Privacy

Differential privacy (DP) mathematically defines the protection of-

fered in regards to the privacy of a single data vector, whether that

is representative of an individual, or a single temporal event [10, 11].

The 𝜖-differential privacy is defined such that two neighboring sets

of data 𝐷 and 𝐷 ′, differing by a single vector are indistinguishable

up to a limit as described by a privacy budget 𝜖 . The output of a

mechanismM applied on each dataset should also be indistinguish-

able from each other, up to our limit of 𝜖 . In other words:

𝑃𝑟 [M(𝐷) ∈ 𝑆] ≤ 𝑃𝑟 [M(𝐷 ′) ∈ 𝑆] ∗ 𝑒𝜖 (1)

Many differentially private ML algorithms support relaxations of

the DP definition. There are two main relevant relaxations of 𝜖-

DP : (𝜖, 𝛿)-DP [12], and (𝛼, 𝜖)-DP (Renyi-DP) [24]. Both relaxations

provide eased requirements for DP , while preserving properties

such as composition and core privacy guarantees.

We will not be using these relaxations in this work, however, we

note they are reducible to (𝜖)-DP , the focus definition in this paper.

In fact, (𝜖, 𝛿)-DP [12] is equivalent to (𝜖)-DP , when 𝛿 = 0, and

(𝛼, 𝜖)-DP [24] is reduced to 𝜖-DP when 𝛼 = inf. Also, the authors

in [3], given a set of assumptions, derive the upper bound of 𝜖-

differential privacy as 𝑝/𝜖 , where 𝑝 is the dataset dimensionality.

2.3 ML Pipeline Stages for DP Noise Injection

As noted by [20], there are three general positions in which DP

noise can be applied to a ML task, to preserve privacy of the data

used, or the model built. These three positions of entry in the ML

pipeline are visualized in Figure 1. To make the next observations

more concrete, let the function F map the training dataset X to

class labels y, that is, F (X) = y. Then, the goal of the ML model is

to approximately learn this relationship between dataset and labels

as best as possible. Next, we discuss each of these three Stages:

Stage 1 (S1): Before the learning process. During the collection or

release of data (X), and before aggregation at the server, if local DP

1Source code available at: https://github.com/PrivateUtility/PrivateUtility
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one batch of data. Additional noise is added to the updated gradient

depending on the values of 𝜖 , and batch sensitivity (Algorithm 2):

Input: Training Dataset 𝑋

Result: Differentially private parameters 𝜃 ′

𝜃 ′ ← RAND, initialize the parameters randomly;

for batch 𝑡 ∈ 𝑇 do
compute gradient Δ𝜃 , clip gradients Δ𝜃 , add DP-noise 𝑏

𝜃 ′ = 𝜃 ′ + Δ𝜃 + 𝑏
end

Complete F ′ learning task with 𝜃 ′.

Algorithm 2: DP-based Stochastic Gradient Decent [1].

2.4.3 S3: DP-based Naive Bayes. The Naive Bayes (NB) [30] classi-

fication algorithm learns probabilistic distributions of the output

classes informed by the input feature values. The algorithm is con-

sidered łnaivež, as it assumes an independence between features.

The distributions are learned directly from the training dataset. The

simple formulation of the model enables the Naive Bayes classifiers

to both be trained, and to make predictions relatively quickly.

IBM NB [17] implements an (𝜖)-DP NB, originally by [33]. The

approach adds noise to the learned distributions that relate the input

feature to the output decision. Algorithm 3 shows the Laplacian

noise addition to the mean and standard deviation (𝜇, 𝜎) computed

from training dataset 𝑋 . A more complete algorithm for handling

both categorical and continuous data can be found in [33].

Input: Training Dataset 𝑋

Result: Differentially private model distributions 𝜃 ′

Compute (𝜇, 𝜎) from 𝑋 ;

for 𝑖 in 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 do
Compute scaling factor 𝑆 (𝜇,𝑖) and 𝑆 (𝜎,𝑖) from feature

mean 𝜇𝑖 , feature STD 𝜎𝑖 , and 𝜖 ;

𝜇 ′𝑖 = 𝜇𝑖 + 𝑏𝑖 ; where 𝑏𝑖 ∈ 𝐿𝑎𝑝 (0, 𝑆 (𝜇,𝑖) );

𝜎 ′𝑖 = 𝜎𝑖 + 𝑏𝑖 ; where 𝑏𝑖 ∈ 𝐿𝑎𝑝 (0, 𝑆 (𝜎,𝑖) );

end

Compute output priors 𝑃 (𝑦 |𝑥) from (𝜇 ′, 𝜎 ′);

Algorithm 3: DP-based Naive Bayes provided by IBM [17].

2.5 Privacy Attacks & Privacy Metrics

Traditionally, privacy has been measured with theoretical metrics

such as information leakage [19, 25] and mutual information [34].

However, recent privacy attacks such as membership inference

(MI) [31, 32, 35] and attribute inference (AI) [35, 37] have been in-

troduced [20] as alternatives to measure privacy risk of ML models.

In this work, we quantify the privacy offered by the implementa-

tion of DP , through the effectiveness of these two well-known pri-

vacy attacks (MI and AI). The threat model adopted by these attacks

falls under the category of black-box attacks, with an adversary

only having access to the input and output of the MLmodel (though

white-box approaches can enhance the attack performance [26]). In

fact, for the current generation of MI attacks [31, 32, 35], only one

query is required for the vector in question (disregarding queries

needed to train an attack model), whereas AI attacks need multiple

queries, one for any possible value in the unknown attribute.

Next, we survey multiple MI and AI attacks. However, in the

experimental part of this work we focus on theMI attack of SalemMI

and the AI attack of YeomAI (see details next).

2.5.1 Membership Inference Attack. MI attack [31, 32, 35] defines

an attacker that tries to determine if a specific data record has been

included within the training data of a given ML model, or not. The

attack objective is related to the definition ofDP , as according toDP ,

two datasets with or without an 𝜖 proportion of records should be

indistinguishable from each other. Of course, this is problematic if

a privacy ML practitioner is seeking to maintain the confidentiality

of their training data, or to adhere to privacy regulations governing

the data used in training. In literature, there are three realizations

of the MI attack [31, 32, 35].

SalemMI [31] attackworks on the premise that aMLmodel is more

confident about a prediction on an input vector it has previously

encountered (in the training set), than an input vector it has not

previously encountered (in the testing set). Thus, a vector with

a higher prediction confidence on any class label is more likely

to be a member vector. A threshold can be found from a similarly

distributed dataset tomake a final distinction if an input is amember

or non-member. Indeed, this attacker does not know the vector’s

classification truth, and the prediction confidence is a single value of

the most probable class, irrespective of if it is the correct prediction.

YeomMI [35] attack is similar to SalemMI . However, they use pre-

diction loss, requiring the true label of the input vector. Additionally,

instead of finding a threshold from a similar data distribution, the

model training loss is assumed known and used as the threshold.

The additional information needed makes the YeomMI attack more

difficult to mount than SalemMI , but more effective.

ShokriMI [32] Shokri’s MI attack trains shadow models that repli-

cate the behavior of the target model, fromwhich an attack model is

trained to differentiate between members and non-member vectors

from the training and testing process of said shadow models. The

attack model takes as an input, the prediction probabilities of all

classes for a given vector. The shadow models allow an attacker

to produce larger datasets for the attack model, and thus train a

superior attack model. However, the process of training shadow

models is a computation and data intensive operation (Though [31]

demonstrates only one shadow model is required, in addition to an

ability to train an attack model on a different dataset and transfer

said attack model to the target model and data).

2.5.2 Attribute Inference Attack. AI attack is an extension of the

MI attack, however, instead of only determining if a record is in-

cluded within the training set, the adversary seeks to recover the

exact value of a missing attribute that could be masked due to it’s

sensitivity (e.g., the diagnosis for type of cancer of an individual).

In particular, if a record vector has a dimensionality of 𝑛 (i.e., 𝑛

features), the adversary is assumed to have 𝑛−1 true features of the

original record. Their objective is to infer the 𝑛𝑡ℎ feature’s sensitive

value. In general, AI attacks are more difficult to mount than MI

attacks due to the requirements on the attacker.

The first method of AI (YeomAI ) follows work by [35] and [20]

in evaluating every binned permutation of a vector and its unknown

attribute, and selecting the value that produces a loss closest to the

model’s training loss. The second attack (SalemAI ) follows work
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by [37] and [31], by selecting the vector permutation that produces

the highest model confidence as the most likely real attribute.

To date, many implementations of AI attack (e.g., as in [20])

bin numerical features for a binary evaluation. In this work, we

go beyond the state-of-art and increase the number of allowable

(binned) values in the inference of a vector’s attribute, from two

bins up to a maximum to 10 bins, depending on the unique values

of an attribute. For instance, if an attribute is binary, two bins are

required. A numerical feature with 6 distinct values will require 6

bins, and a continuous feature will be binned into 10 value bins.

2.5.3 Measuring Privacy Leaks: Adversary Advantage. The adver-

sary advantage can be described as the improvement of a privacy

attack observed on a set of input vectors that were included in the

training set, as opposed to not being included in the training set.

The rate at which the privacy attack succeeds on the positive class

(member vectors) is the True Positive Rate (TPR), while the rate

at which privacy attack is incorrectly predicted on the negative

class (non-members) is the False Positive Rate (FPR). As such, the

advantage can be formulated as 𝐴𝐷𝑉 = 𝑇𝑃𝑅 − 𝐹𝑃𝑅. A rigorous

definition of the advantage is provided in [35]. It is clear novel

attacks, and their advantage can be added in our framework. Here,

we shall measure the impact of the SalemMI and YeomAI attacks.

2.6 ML Utility Metrics

The objective of ML is to learn trends from a training dataset, and

then predict the label of a previously unseen input instance. To

evaluate the effectiveness of a trained model, predictions are made

on a holdout set (not used in training), said predictions are then

compared to known true labels. The proportion of the holdout

set that is correctly re-predicted as the true labels, represents the

accuracy (ACC) of the trained model: 𝐴𝐶𝐶 = 𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡/𝑛ℎ𝑜𝑙𝑑𝑜𝑢𝑡 .

Accuracy is a simple measure of ML prediction performance.

Other commonly usedmetrics are AUC, Precision, Recall, or F-Score.

Also, new metrics such as model fairness [8] and minimization of

computational processes [4, 6] can be important in a privacy-utility

tradeoff. All such utility metrics can be added in our framework.

We focus onAccuracy Loss (ACL), defined as the ratio of perfor-

mance lost whenDP is applied to theML process (𝑚), in comparison

to an equivalent ML model trained with no DP applied (i.e., 𝜖 = inf):

Accuracy Loss (ACL) = 1 −
𝐴𝐶𝐶 (𝑚,𝜖)

𝐴𝐶𝐶 (𝑚,𝜖=inf)
(2)

3 EXPERIMENTAL INVESTIGATION

In this section, we detail how the methodology introduced earlier

is instantiated2 to experimentally investigate the tradeoff between

ML model performance with respect to prediction, vs. privacy guar-

antees provided to data used to train said model. In particular, with

our experimentation, we are interested in answering questions of:

(1) What is the inflection point in the tradeoff between ML

model accuracy and privacy leak? Is this inflection point

consistent across various types of privacy attacks?

(2) Does the stage of the DP-enabled ML framework in which

the DP noise is applied impact this inflection point?

2We provide our code and data at https://github.com/PrivateUtility/PrivateUtility

(3) Is there a ML method that outperforms others at both predic-

tion and privacy guarantees, consistently across datasets?

We seek to empirically identify important parameters that affect

the manifestation of this privacy-utility tradeoff. To this end, in

Sec. 3.1, we detail the experimental procedures that vary the DP

noise amount (𝜖), where it is applied in the framework (Stages), dif-

ferent DP-ML algorithms implemented and metrics used. Then, we

describe the training datasets used, both synthetic and real (Sec. 3.2),

providing details on number of classes and type of attributes (con-

tinuous, binary). In the next Section 4, we present our experimental

results and extract key takeaway messages.

3.1 Experimental Framework

First, we detail implementations of DP-ML methods used, as well

as metrics to assess ML performance and privacy when DP noise

is applied. We note that Sec. 2 already provided details for the pri-

vacy attacks and ML methods used. Then, we outline the common

steps shared between all evaluations of the DP-ML methods. We

bootstrapped our framework implementation from [21], but make

the following crucial extensions:

• accommodate the new ML algorithms to run in this framework,

• adapt code to improve framework resource consumption,

• add implementation of MI attack proposed by Salem et al. [31],

• adapt AI attack of Yeom et al. [35] to support multiple bin values

instead of only binary,

• add synthetic data generation for tradeoff & benchmark studies.

3.1.1 Machine & Deep Learning Methods. We used implementa-

tions of ML algorithms explained in Sec. 2.4 readily available online.

Tensorflow-Privacy [1] has code in [15]. IBM Naive Bayes [17] has

code in [18]. The hyper-parameters of the NN models were repli-

cated from [20]. All other models’ parameters are kept at library

defaults.

3.1.2 Performance Metrics & Privacy Budget. In our experiments

with the various ML methods and datasets, we measure different

performancemetrics. For prediction performance of a trainedmodel,

we measure Accuracy Loss (ACL) (See Sec. 2.6), We perform two

MI and AI attacks, SalemMI and YeomAI (See Sec. 2.5), to quantify

privacy leaks. Finally, in order to vary the amount of DP noise

applied in each framework Stage and in each ML method, we use

different values for the privacy budget:

𝜖 = {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000}.

3.1.3 Experimental Steps. To perform the evaluation for: 1) a given

dataset, on 2) a DP-based ML method, with 3) a privacy budget 𝜖 ,

we first sample from the dataset two sets of 10,000 samples each,

forming our training and testing sets. Then, we train the ML model

with the training set. In the case of S1 DP noise, we apply noise to

the training set prior to the model training.

Each model’s prediction accuracy is obtained on the unseen

testing set. With a trained model, the SalemMI , and YeomAI attacks

are performed.

In MI attacks, the training set constitutes the membership set,

whilst the testing set is the non-member test set. In AI attacks,

we consider up to 10 unique values for the unknown protected

attribute (whilst accounting for continuous features). The attack
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Table 2: Summary of datasets used in our experimental in-

vestigation, with respect to number of instances available,

classes provided (or constructed), and attributes available.

Dataset Instances Classes Attributes

Synthetic 100,000 2, 5, 10, 20, 50, 100, 200 50

CIFAR [23] 50,000 20, 100 50

Purchase [2] 200,000 2, 10, 20, 50, 100 599

Netflix [27] 100,000 2, 10, 20, 50, 100 1000

is repeated on 20 different attributes, randomly selected to be the

protected attribute. Then, the entire training and attack process is

repeated 5 (10) times for synthetic (real) data, with training and

testing sets sampled anew, to reduce impact of biases arising from

the data or DP noise.

3.2 Experimental Datasets

3.2.1 Synthetic Data. We generated data by uniformly sampling

100𝑘 vectors from a normalized feature space of 50 features. From

these 100𝑘 vectors, we apply k-means clustering onto the dataset

to artificially create labels of 2, 5, 10, 20, 50, 100 and 200 classes.

This results in 7 different datasets of varying number of classes,

however, they all contain the same vectors originally sampled.

3.2.2 Real-World Data. We used three real datasets to study the

tradeoff in our DP-enabled framework (summary in Table 2):

CIFAR-100 [23]: The CIFAR dataset consists of 50𝑘 tiny images of

various objects, that can be labeled according to 100 types. They can

also be re-classified under 20 type super-classes. This dataset has

been pre-processed with principal component analysis as in [20],

to extract 50 key features to represent each of the images.

Purchase [2]: The Purchase dataset contains 200𝑘 user records of

item purchases made from a set of 599 products. The values are

binary, indicating if users had or not bought one of the 599 items.

We perform a similar pre-processing step as in [32], by encoding of

a single user’s transaction history as a binary vector, followed by

the k-means clustering of users into purchaser groups. We consider

label complexities of 𝑘 = {2, 10, 20, 50, 100}.

Netflix Prize [27]: The Netflix dataset was first released in 2006,

and contains ratings (from 1 to 5) by viewers on the Netflix plat-

form for movies they watched. This dataset was also used in [35].

However, insufficient pre-processing details were provided for us to

replicate their exact dataset. Therefore, we performed the following

steps: (1) Sample the user ratings of the top 1000 rated (based on

number of ratings, not rating score) movies within the dataset. (2)

Every user has its ratings assembled into a feature vector, with

unrated movies filled in with a zero value. (3) If a user has not rated

any of the 1000 most popular movies, the user is excluded from the

dataset. (4) Then, we apply k-means clustering (as in Purchase) to

obtain viewer groupings of 𝑘 = {2, 10, 20, 50, 100}.

4 EXPERIMENTAL RESULTS

In this section, we present our results for different experiments

using our evaluation framework, to answer the questions posed in

Sec. 3. We first analyze results with synthetic data, while control-

ling class complexity, and extract generalized patterns related to

the privacy-utility tradeoff. We shall compare these patterns with

results on real data to assess how the tradeoff manifests on the

real-world datasets.

4.1 Privacy-Utility Tradeoff on Synthetic Data

We perform experiments on controlled, synthetic datasets to dis-

cover generalizable properties that can be drawn regarding the

privacy-utility tradeoff. The synthetic dataset allows us to remove

the effect of data-specific biases (in a controlled manner), that may

otherwise be present in the real data.

4.1.1 ML accuracy vs. DP noise. In Figure 2, we analyze ACL and

its inflection point for the different ML algorithms, while varying

class complexity, amount of DP noise and the stage at which it is

applied. When applying large amounts of DP noise (i.e., small 𝜖)

at the input Stage (Stage 1), we observe that the ACL is equivalent

to a random guess irrespective of the ML algorithm in use. It is

not until 𝜖=10 for NB and ∼100 for NN that the ML algorithm is

capable of outperforming a random guess. In Stage 2, NN exhibits

a notable inflection point at 𝜖=10. Finally, at Stage 3, the inflection

point for NB occurs at 𝜖=0.01. When we compare ML performance

across Stages, we observe that from S1 to S3, there is an increasing

amount of DP noise that can be applied to the ML method, before

the accuracy of the system is reduced to a random guess.

Notably, given that the synthetic dataset is generated with the

same underlying data vectors but with different class complexities,

we observe that the inflection point occurs at about the same value

of 𝜖 , irrespective of the number of classes.

This inflection point does not vary across class complexities, but

the complexity of each dataset does have a direct impact on the

maximum ACL (due to the random guess).

4.1.2 Membership Inference Attacks vs. DP noise. In Figure 3, we

analyze the results on SalemMI attack. We first analyze the inflec-

tion point of the privacy advantage of the attacker, for each of the

framework stages, followed by an analysis on the class complexity.

Across all ML methods in Stage 1, there is a clear inflection point

at 𝜖=100, where an attacker until this point has a privacy advantage

on vectors within the training data. It is interesting to note that in

comparison to the ACL, the SalemMI advantage reaches zero before

the accuracy is completely diminished. In Stage 2, the absolute

advantage is rather small, resulting in a seemingly high variance.

Finally, in Stage 3, the inflection point for NB occurs at 𝜖=1∼10. We

note that the gradient of decreasing SalemMI advantage (i.e., while

𝜖 is decreasing), is similar between S1 and S3, while the inflection

points in S3 occur at smaller 𝜖 values than S1.

Across Stages, we note that for ML methods in S2, the SalemMI

struggles with very low advantages, in comparison to S1 and S3.

Similar to what was observed in ACL, the class complexity appears

to have little effect on the inflection point of the SalemMI attack.

However, where the attack is effective, a higher class complexity is

more vulnerable to SalemMI attack.

4.1.3 Attribute Inference Attacks vs. DP noise. In Figure 4, we an-

alyze the results on YeomAI attack. We study the inflection point

of the attack for each stage and across stages, and across class

complexity.
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the accuracy is generally low, and also highly dependent on the

dataset used (0.1<ACL <0.9).

Stage 3 (S3): When the DP noise is applied at S3, i.e., after the

model was trained but before it is used, we see (Figure 5(d)) the

ACL at its highest until 𝜖≈0.1 for NB. When this inflection point is

passed, and DP is applied, the lowest ACL ≈0 is achieved, and this

performance is consistent across all datasets and class complexities.

Remark 2. We observe that ACL drops below 0.0 in S3: NB, indi-

cating a model accuracy higher than if no privacy was applied. It is

likely that the small amounts of DP noise applied have assisted in

generalizing the model to predict better on unseen data. However, as

the DP noise continues to increase, a diminished model performance

returns. These may be interesting cases where a practitioner can seek

to obtain smaller 𝜖 at no cost to model performance.

Dataset class complexity: Generally, we know that datasets with

high class complexity are harder to model with ML methods, and

thus, their accuracy achieved would be expected to be low, even

in presence of no DP noise. Indeed, in the above experimentation,

we notice that in several occasions, datasets with 50 or 100 classes

are difficult to model with high accuracy and high DP noise. When

small amount of DP noise is applied on low-complexity datasets

with 2, 10 or even 20 classes, and especially in S1 and S3, the tested

ML methods perform fairly well, with low ACL.

Comparing ML Performance Across DP-ML framework

Stages: To offer stronger protection guarantees for the given data,

moreDP noise must be added on the data (i.e., move towards the left

hand-side of the aforementioned plots). When adding more noise,

it appears that the ACL is affected in a similar fashion, for any ML

method used, and regardless of the Stage at which we apply the

noise, or dataset class complexity. There is an amount of DP noise

that when it is added, it obscures much of the data variability, and

consequently increases theACL of each trainedmodel. Interestingly,

as identified earlier at the analysis of results from each Stage, and

even on the results with synthetic data, this inflection point moves

to higher levels of DP noise (i.e., lower values of 𝜖), as the noise

is added in later Stages in the framework. In particular, we notice

that the ACL is drastically reduced when:

Stage 1: Inflection point of 𝜖 > 100
Stage 2: Inflection point of 𝜖 > 1
Stage 3: Inflection point of 𝜖 > 0.1

Furthermore, it appears that the various models perform differ-

ently depending on the Stage the DP noise is applied. NB is more

effective when used at S3 than S1, for the same amount of DP noise,

the model accuracy is better (i.e., ACL is lower). However, if the

DP-enabled ML framework requires consistent ML performance

(i.e., low ACL) across datasets of different class complexities (i.e.,

2-100 classes), then DP noise may need to be applied at S1. NN

performs better across all datasets when low noise is applied at S1.

4.2.2 Membership Inference Attacks vs. DP noise. Next, we analyze

the advantage of an attacker when mounting the SalemMI attack,

in a similar fashion as with the synthetic data, but grouping results

of all real datasets by class complexity. We discuss the effectiveness

of SalemMI attack on individual models per stage and across stages,

and the impact of class complexity on the attack.

Stage 1 (S1): When DP is applied at S1, we notice that SalemMI

advantage is generally low and close to zero, up to 𝜖≈100 for NB

in Figure 6(a). NN shows a non-zero advantage from 𝜖≈10 and on.

Moving from left to right in the 𝜖-axis, and until these thresholds are

reached, the SalemMI attacker does not gain any privacy advantage

from discerning if data records were being included in the training

dataset of the given model or not.

Stage 2 (S2): When DP noise is applied at S2, the SalemMI advan-

tage is low for any 𝜖 for NN , in Figure 6(c), with the effectiveness

of this attack on NN built with DP noise added at this Stage is low.

Specifically, we observe that for the NN , the attacker’s advantage

is overall low (SalemMI <0.008), regardless of the amount of DP

noise applied.

Stage 3 (S3): When DP is applied at S3, SalemMI advantage in-

creases when 𝜖>1 for NB in Figure 6(d). This means that when NB

is trained, datasets with high class complexity are more vulnerable.

This has been previously stipulated as a result of overfitting to each

specific class, given that the feature space is to be divided up into

more decision regions.

Interestingly, all aforementioned results demonstrate similar

patterns with the results on synthetic data (i.e., Fig. 3 and 6).

Comparing SalemMI AcrossDP-ML framework Stages:As ex-

pected, when adding less DP noise in the framework (depending

on the Stage at which it is applied), this impacts the effectiveness of

a SalemMI attacker. In particular, when the inflection points below

are reached, the attacker has a non-zero advantage.

Stage 1: Inflection point of 𝜖>10∼500
Stage 2: Inflection point of 𝜖>0.5
Stage 3: Inflection point of 𝜖>1

Additionally, for the same amount of DP noise, different ML

methods allow the attacker to learn different amounts of private in-

formation (i.e., which instances of data are members of the training

set). For example, NB allows the attacker to learn up to 10x more

when the DP is applied in S3 than in S1, in addition to the inflec-

tion point to be found in lower 𝜖 values for S3 than for S1. Finally,

when DP is applied in S2:NN , there is 10x less privacy leakage than

S1:NN .

4.2.3 Attribute Inference Attacks vs. DP noise. Next, we analyze the

results of YeomAI attack on real data, in a similar fashion as with

the synthetic data, but again, grouping results of all real datasets by

class. Again, we discuss the attack’s effectiveness on each stage and

across stages, and how class complexity is an influencing factor.

Stage 1 (S1): From Figures 7(a-b), we observe that for many of the

models, and for the different datasets and class complexities, the

YeomAI advantage is very low and even negative, which points to

failed attack for leaking private information on the attributes of

member data vectors in comparison to non-members. A negative

advantage indicates that the attacker can achieve greater attack

success when a vector has been excluded from the training dataset

than when kept within. Therefore, this attack is not very effective

when executed on a DP-enabled ML framework that has trained

models while injecting DP noise at S1, i.e., before any ML training.

Between of the two models trained, NN would potentially leak

the most, when the DP noise is low (𝜖>100). Interestingly, the

adversary’s advantage would still be 6x lower than in SalemMI ,

though AI is the more difficult attack.

Stage 2 (S2): When DP noise is added at S2, from Figure 7(c), we

observe an equally low advantage, however the attacker achieves
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Table 3: Given a constrained ACL, we show best attainable

privacy guarantee (𝜖), and the responsibleDP-ML algorithm.
2 Classes 10 Classes 20 Classes 50 Classes 100 Classes

ACL 𝜖 DP-ML 𝜖 DP-ML 𝜖 DP-ML 𝜖 DP-ML 𝜖 DP-ML

0.01 50.00 S1-NN 16.52 S3-NB 38.11 S3-NB 31.71 S3-NB 30.17 S3-NB

0.02 47.23 S3-NB 14.18 S3-NB 35.99 S3-NB 30.01 S3-NB 28.61 S3-NB

0.05 37.62 S3-NB 9.47 S3-NB 29.61 S3-NB 24.89 S3-NB 23.92 S3-NB

0.10 21.61 S3-NB 7.31 S3-NB 18.99 S3-NB 16.37 S3-NB 16.10 S3-NB

0.20 7.70 S3-NB 4.52 S3-NB 8.16 S3-NB 8.32 S3-NB 8.52 S3-NB

0.30 1.14 S3-NB 3.48 S3-NB 4.99 S3-NB 5.64 S3-NB 6.08 S3-NB

Table 4: Given a constrained 𝜖, we show the smallest com-

promise in ACL, and the responsible DP-ML algorithm.
2 Classes 10 Classes 20 Classes 50 Classes 100 Classes

𝜖 ACL DP-ML ACL DP-ML ACL DP-ML ACL DP-ML ACL DP-ML

0.01 0.321 S1-NN 0.804 S1-NN 0.863 S1-NN 0.950 S1-NN 0.958 S1-NN

0.10 0.321 S1-NN 0.802 S1-NN 0.858 S3-NB 0.949 S1-NN 0.952 S3-NB

1.0 0.301 S2-NB 0.540 S3-NB 0.634 S3-NB 0.717 S3-NB 0.727 S3-NB

10 0.136 S3-NB 0.038 S3-NB 0.142 S3-NB 0.137 S3-NB 0.139 S3-NB

100 0.001 S3-NB -0.141 S3-NB -0.055 S3-NB -0.124 S3-NB -0.135 S3-NB

1000 -0.001 S3-NB -0.127 S3-NB -0.042 S3-NB -0.109 S3-NB -0.121 S3-NB

offer good accuracy for datasets with various class complexities.

Only NN in S1 is a viable option for a binary class dataset, when

the ACL requirement is very low (e.g., 0.01).

𝜖-bounded recommendations: We now determine which DP-

based ML algorithm offers the least accuracy loss, when a practi-

tioner’s privacy guarantee has been mandated. We use a similar

interpolation technique. The results in Table 4 show that NN with

DP noise applied in S1 are better options when high privacy con-

straints are required.

However, they lead to high ACL, which renders the models use-

less. When the privacy requirement can be relaxed, and the noise

is applied in S2 or S3, then NB is a better option for maintaining

ML accuracy, this remains true for datasets with low or high class

complexity.

4.2.5 Summary of Findings. In Figure 8, we summarize the findings

from different experimental setups, for ACL and for the two privacy

attacks of SalemMI and YeomAI . In these summary figures, the

tradeoff between ACL and protection against privacy leaks emerges

more clearly. From this figure, and based on all previous explo-

rations with respect to ACL and the two privacy attacks (SalemMI ,

and YeomAI ), we summarize our key takeaways:
(1) For a given amount of DP noise applied, ML models predict

better (i.e., have good accuracy and lowACL), when the noise

is inserted at a later Stage (e.g., S2 or S3 than S1) [Sec. 4.2.1].

(2) Conversely, to achieve reduced privacy leaks (in lower attack

advantages) with least amount of DP noise, this noise must

be added at earlier Stages in the framework (S1 > S2 > S3)

[Sec. 4.2.2 & 4.2.3]. Additionally:

(3) The amount of DP noise added to a given DP-ML

method does not influence the inflection point of a privacy

attack (both MI and AI); instead, the inflection of attack suc-

cess is dependent on the DP-MLmethod used and framework

Stage the noise is applied (as noted in Takeaway 2).

(4) In both synthetic and real datasets, the data complexity is

demonstrably unlikely to affect the inflection point of ACL

[Sec. 4.2.1], or attack advantage [Sec. 4.2.2 and 4.2.3] for a

given DP-ML method. We also corroborate the known result

that higher class complexities (more classes) produce higher

privacy leaks [31, 32].

In the context of both ACL and Privacy:

(5) The performance of current state-of-art MI and AI attacks

is directly related to the prediction accuracy of the DP-ML

model used. The inflection points of ACL and privacy advan-

tage for each DP-ML method correspond to approximately

the same amount of DP noise.

(6) When investigating the tradeoff over a wide range of ACL

and 𝜖 constraints, we observe that S3:NB is the superior

performing DP-ML method.

(7) Evaluating the privacy-utility tradeoffwith synthetic [Sec. 4.1]

and real-world data [Sec. 4.2] yields similarities in trends and

takeaways. There is potential for a dataset-agnostic approach

to estimate inflection points for similarly classed data.

5 DISCUSSION

We presented a comprehensive empirical study on the inherent

tradeoff between utility and privacy when applying DP on ML al-

gorithms. We investigated two, state of art DP-enabled ML and

DL algorithms currently available in literature, and evaluated the

aforementioned tradeoff in each ML method, using two privacy

inference attacks and one utility metric. We performed this inves-

tigation using both synthetic datasets and three commonly used

real datasets of varying class and attribute complexity. Finally, we

extracted from this experimentation various lessons, and offered

recommendations to interested privacy ML researchers.

During this evaluation with our framework, we limited the num-

ber of experimental configurations, to make the problem tractable

with comparable results. Next, we discuss experimental variants

that can be investigated in the future with our framework.

DP variants: In this study, we considered only 𝜖-DP . However,

as already mentioned in Section 2.2, there is an increasing number

ofDP compositions and relaxations, such as (𝜖, 𝛿)-DP and (𝛼, 𝜖)-DP .

Interestingly, these DP relaxations are relatively recent, and many

of the DP-enabled ML algorithms available in literature that we

used, are still using the original 𝜖-DP . Future work should address

how to adapt such algorithms to support newer DP relaxations,

but should also enable ML practitioners to fairly compare these

methods. For this, one would need to establish an equivalence

between the various DP options available. In fact, in the future,

even a simple evaluation of how a varying 𝛿 in (𝜖, 𝛿)-DP impacts

the resulting ACL and privacy metrics would be highly informative.

Local vs. Global DP: The boundary of trusted and non-trusted

entities is becoming increasingly blurred. On one hand, ML model

holders seek to protect their models’ privacy and user data. On

the other, privacy advocates argue even the model holders should

not be a trusted entity. In fact, there is a notion of trust in the

DP ML pipeline: Local DP is when DP is applied very close to

data generation without considering information or context about

the entire system. Instead, Global DP does not need to tradeoff

as much utility for same mathematical guarantees: with global

system view, it can make more intelligent decisions on how to

apply DP noise. In our framework, Local DP loosely corresponds to

inserting DP noise in S1, with ML training receiving DP-protected

data, whereas Global DP corresponds to DP noise applied in S2 or

S3, with the model having unfettered access to unprotected data.

Utility metrics: We focused on accuracy (loss) of a DP-enabled
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