
22 February 2021

POLITECNICO DI TORINO
Repository ISTITUZIONALE

-MON: Traffic Anonymizer for Passive Monitoring / Favale, Thomas; Trevisan, Martino; Drago, Idilio; Mellia, Marco. - In:
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. - ISSN 1932-4537. - ELETTRONICO. - (2021),
pp. 1-14.

Original

-MON: Traffic Anonymizer for Passive Monitoring

ieee

Publisher:

Published
DOI:10.1109/TNSM.2021.3057927

Terms of use:
openAccess

Publisher copyright

copyright 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating .

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2871110 since: 2021-02-15T11:05:02Z

IEEE

1

α-MON:
Traffic Anonymizer for Passive Monitoring

Thomas Favale†, Martino Trevisan†, Idilio Drago‡, Marco Mellia†
†Politecnico di Torino, first.last@polito.it
‡University of Turin, idilio.drago@unito.it

Abstract—Packet measurements at scale are essential for sev-
eral applications, such as cyber-security, accounting and trou-
bleshooting. They, however, threaten users’ privacy by exposing
sensitive information. Anonymization has been the answer to this
challenge, i.e., replacing sensitive information with obfuscated
copies. Anonymization of packet traces, however, comes with
some challenges and drawbacks. First, it reduces the value of
data. Second, it requires to consider diverse protocols because
information may leak from many non-encrypted fields. Third,
it must be performed at high speeds directly at the monitor, to
prevent private data from leaking, calling for real-time solutions.

We present α-MON, a flexible tool for privacy-preserving
packet monitoring. It replicates input packet streams to different
consumers while anonymizing protocol fields according to flexible
policies that cover all protocol layers. Beside classic anonymiza-
tion mechanisms such as IP address obfuscation, α-MON sup-
ports z-anonymization, a novel solution to obfuscate rare values
that can be uniquely traced back to limited sets of users.
Differently from classic anonymization approaches, z-anonymity
works on a streaming fashion, with zero delay, operating at high-
speed links on a packet-by-packet basis. We quantify the impact
of z-anonymity on traffic measurements, finding that it introduces
minimal error when it comes to finding heavy-hitter services.
We evaluate α-MON performance using packet traces collected
from an ISP network and show that it achieves a sustainable
rate of 40 Gbit/s on a Commercial Off-the Shelf server. α-MON
is available to the community as an open-source project.

Index Terms—Anonymization, Passive Measurements, Traffic
Monitoring, Privacy

I. INTRODUCTION

Passive measurements collected from networks are fun-
damental to the well-functioning of the Internet. They are
widely used to support applications such as cyber-security
and traffic management [1], [2]. Packets flowing on network
links are either saved as full-packet traces or processed on-the-
fly to generate traffic summaries. Network packets, however,
carry sensitive information about users. For example, HTTP,
TLS and DNS traffic exposes names of services contacted
by users, which in turn can be used to build users’ pro-
files [3], [4]. Network measurements thus may expose privacy-
sensitive information and shall be performed with care to avoid
threatening users’ privacy [5]. New privacy regulations (e.g.,
GDPR [6]) aim at protecting users’ privacy by imposing strict
rules when handling sensitive information. They provide the
interested parties rights and assign powers to the regulators to
enforce these rights. Network measurements must be treated in
the light of these regulations, and technology must guarantee
that sensitive information is not collected unless needed.

The solution to these problems has been anonymiza-
tion – i.e., replacing sensitive values by obfuscated copies.
Anonymization is usually done in a per-field fashion, since
different network protocol fields represent different privacy
threats. Client IP addresses are identifiers, i.e., they allow one
to identify the users (devices) generating traffic immediately.
As such, they must always be obfuscated. The classic approach
is CryptoPAN [7], a method that replaces IP addresses with
pseudo-encrypted copies while maintaining the network pre-
fixes. Other protocol fields, while not carrying identifiers, still
pose risks as they may help user reidentification, thus acting as
quasi-identifiers. Server IP addresses and server names (e.g., in
HTTP or TLS) can be quasi-identifiers. They give hints about
users’ interests and, in some cases, allow user reidentification.
Quasi-identifiers, therefore, shall be obfuscated too.

Replacing all identifiers and quasi-identifiers in traffic
measurements with obfuscated copies reduces the value of
the traces substantially. Taking again server names as an
example, popular names (e.g., www.facebook.com or
www.google.com) bring little information to uncover any
specific user. Yet, associating traffic to particular servers is
instrumental, e.g., for network management, accounting and
dimensioning.

Anonymization techniques like k-anonymity [8] can handle
quasi-identifiers – i.e., obfuscating values that allow user re-
identification. However, these approaches work with batches
of data and are impractical with high-dimensional datasets,
like, e.g., the set of websites users access. In our scenario,
packets arrive at very high speeds and must be processed
and forwarded online with minimum delay. Storing traces for
posterior offline anonymization is not a viable option.

Here we present α-MON, a flexible and modular tool to
anonymize network packets in a streaming fashion, with zero
delay. α-MON acts as an anonymization device. It receives
packets from the network, anonymizes them in real-time, and
immediately outputs packets to multiple consumers – e.g.,
security monitors or passive meters.
α-MON follows a novel approach to anonymize packets on-

the-fly. To this end, we introduce z-anonymity, a mechanism
to hide infrequent field values (like unpopular server names)
from the traffic. When observing a value in a data stream, z-
anonymization removes it if less than z users share the value
in the past ∆T time interval. Performing z-anonymity online
requires ingenuity, and α-MON implements a scalable and
parallel solution for this. We show that z-anonymity introduces
minimal errors on volumetric traffic measurements, such as

2

the estimation of traffic share of popular web services and
websites.

We evaluate α-MON performance on Common-Off-The-
Shelf (COTS) hardware with traces collected from operational
networks. We show that: (i) α-MON helps to protect sensi-
tive data via z-anonymity, preventing the disclosure of field
values associated with fewer than z users; (ii) α-MON allows
most information that would be obfuscated by strict per-field
anonymization to be exported, thus generating richer traces
than alternatives; (iii) α-MON scales to tens of Gbit/s with
zero packet loss using few cores. In pessimistic scenarios, it
easily achieves several Gbit/s too; (iv) α-MON introduces min-
imal errors on common measurement scenarios, e.g., allow-
ing accurate accounting of the heavy-hitters’ traffic. Finally,
α-MON is publicly available as an open-source project.1

This paper extends our previous work [9] 2 on several
directions. We implement additional functionalities to enable
more flexible anonymization and enhance the experimental
evaluation to study system parameters’ impact: we have ex-
tended the implementation of z-anonymity to support generic
protocol fields and many performance improvements, which
will be discussed later. Moreover, we include a thorough
analysis of the impact of z-anonymity on the typical traffic
measurement accuracy. The reader can find in [10] an in-depth
comparison between k-anonymity and z-anonymity. Using a
probabilistic framework, we show that a proper choice of the
z-anonymity parameters allows the data curator to obtain a k-
anonymized dataset with reasonable certainty.

The paper is organised as follows. Section II defines z-
anonymity, while Section III describes α-MON architecture,
design and implementation. Section IV quantifies the impact
of z-anonymity on traffic measurements. Section V bench-
marks α-MON performance and shows how to tune system
parameters. Section VI discusses the z-anonymity and α-MON
approach and limitations. Section VII summarises the related
work, and, finally, Section VIII concludes the paper.

II. z-ANONYMITY

The drastic increase in the rate at which personal data
are collected has pushed researchers to propose techniques to
anonymize data. The goal of anonymization is to avoid dis-
closing personal information without compromising the utility
of datasets. The seminal work of Samarati et al. proposes
the k-anonymity property [8], [11]. It aims at preventing the
reidentification of individuals or the extraction of sensitive
information about them by ensuring that at least k individuals
share the same properties in the dataset. k-anonymity has been
extended with the l-diversity [12] and t-closeness [13] ideas,
which we will discuss in Section VI.

k-anonymity however does not scale [14] and cannot be
implemented with minimal delay. With α-MON we want to
achieve some level of anonymity already during data collec-
tion, by hiding the most sensitive information observed in

1https://smartdata.polito.it/alpha-mon-anonymized-passive-traffic-monitoring/
2We decided to maintain the name α-MON since we consider α as a generic

way to address anonymization. In z-anonymity, we decide to switch to z
since it is only one of the possible anonymization technique implemented in
α-MON, and that name could have been misleading.

0
1

2

3

4
z

Time

User1 User2 User1 User3 User2
!T

!T!T
!T

yeueukc.gmw

sgkosyo.ciy

ukmcuyo.qaq private.com iywyoiy.ysi

!T

User2

iyqciys.ias

!T

Fig. 1: z-anonymity concept. Three users access the FQDN
private.com over time. When less than z = 3 unique
users’ are seen in the past ∆T , requests must be anonymized.

network measurements. This goal calls for highly scalable and
zero-delay solutions. We lie in a scenario where anonymization
must be performed in real-time and must scale up to multi-
Gbit/s streams. Streaming approaches for anonymity [15],
[16] load the incoming records in a structure and release
anonymized data in batches, which is impractical with high-
speed network traffic, given the large speeds of the input
streams. In sum, we cannot assume to have the whole dataset,
or a large subset of the data, at disposal for anonymization.

A. z-anonymity definitions

Here, we propose a novel concept of anonymity. We call
it z-anonymity. It targets real-time, online processing, with
minimum latency. In the following, we provide a formal
definition. We assume that users are identified by an identifier.
The most common identifier in network traces are client IP
addresses3.

Quasi-identifiers are attributes whose values must be con-
trolled, as they may help to re-identify users. In our case,
quasi-identifiers are fields present in protocol headers and
payload that may be associated with a small group of users.
Examples include specific server IP addresses and server
names present in payloads (e.g., in DNS) and user-agent
strings (e.g., in HTTP requests). For instance, an attacker could
leverage a user’s interest in a particular website to re-identify
her and, in turn, all her traffic. z-anonymity aims at obfuscating
rare values of quasi-identifiers in real-time, preventing these
privacy attacks. We introduce the definition of z-private quasi-
identifier.

Definition 1. A z-private quasi-identifier is a value observed
at time t that is associated with less than z users in the past
∆T time interval.

If the anonymized dataset hides z-private quasi-identifiers,
it achieves z-anonymity.

Definition 2. A stream of packets is z − anonymized if all
z-private quasi-identifiers are obfuscated, given z and ∆T .

3z-anonymity can handle any protocol field as an identifier.

https://smartdata.polito.it/alpha-mon-anonymized-passive-traffic-monitoring/

3

Internet

Flow Meter

Campus/Enterprise
Network

……….

Security Network Monitoring

……….

⍺-MON

… …

Fig. 2: Deployment scenario: α-MON anonymizes the traffic
coming from a span port or an optical splitter and forwards it
to different legacy monitors.

In other words, if a quasi-identifier has been observed
by at most z-1 users in ∆T , we obfuscate it. By adjusting
parameters z and ∆T , it is possible to regulate the trade-off
between data utility and privacy. Indeed, a large z results in the
majority of values to be anonymized, while a small z allows
rare values to be exposed. ∆T regulates the memory of the
system.

We exemplify the idea of z-anonymity in Figure 1. Here
the quasi-identifiers are the Fully Qualified Domain Names
(FQDNs) found in packet payloads, which refer to websites
and web services. Suppose different users access the FQDN
private.com. Let z = 3. The first four accesses shall be
obfuscated as only two users accessed it up to then. When we
observe User3’s request, we have 3 users that have accessed
private.com in the past ∆T . Thus, we allow User3’s
request to pass without anonymization. Notice that exposing
private.com does not uncover User3, as attackers cannot
know who the other two users are. After some time, User2
accesses the domain again. The previous entry for User1 is
no longer in the current ∆T window, and private.com is
anonymized again.

Clearly, in the above example, popular websites and services
would be accessed by several users, and their names would not
be anonymized. Rare FQDNs that could bring specific infor-
mation about users would likely be anonymized. In Section IV,
we provide a thorough analysis of how z-anonymity impacts
the accuracy of traffic measurements.

III. α-MON DESIGN

We now describe α-MON, covering requirements, design
choices, and implementation, with a special focus on the data
structures used to achieve z-anonymity at high-speeds.

A. Deployment scenario and requirements

Figure 2 shows the deployment scenario. α-MON operates
as a classic network monitor, receiving packets from one or
multiple network cards, either using span ports or optical
splitters. To allow legacy applications to coexist, α-MON is
deployed in front of them and forward anonymized packets
to multiple consumers. Compatible with best-practices for

privacy, α-MON performs different anonymization according
to the consumer, thus passing on the minimal information
required by each legacy application. For example, a security
monitor may need traffic with little modification, while a
passive meter used for traffic accounting can operate with less
information.
α-MON must be flexible and support a rich set of function-

alities. It shall satisfy the following requirements:

1) It must achieve z-anonymity to hide private quasi-
identifiers with customizable z and ∆T ;

2) It must support a flexible set of anonymization policies,
covering all protocol layers;

3) It must be scalable and deployable in high-speed links,
handling multiple tens of Gbit/s with no packet loss;

4) It must support multiple legacy applications with differ-
ent anonymization requirements.

B. Packet ingestion and forwarding design

α-MON runs on a COTS server and receives packets from
several network interfaces. For efficiency, we implement it
in C language. For packet capture, we rely on the Data
Plane Development Kit (DPDK) [17], a set of libraries and
drivers for fast packet processing. α-MON follows a multi-
threaded design and can take advantage of all cores available
in a server. We use the architecture proposed in our previous
work [18], in which the incoming packets are load-balanced
to different threads – one per CPU core – using the Receive
Side Scaling (RSS) feature of modern network cards. Each
network interface implements load-balancing algorithms so
that incoming packets are spread to multiple queues based on
hash functions. This mechanism allows fast and scalable load
balancing in hardware and avoids wasting CPU resources.

Some of the α-MON anonymization capabilities require
stateful per-flow processing and mandate data structures to
keep track of TCP and UDP flow status.4 To avoid expensive
synchronizations, network interfaces load-balance packets in a
consistent per-flow fashion. In other words, packets belonging
to the same flow are always processed by the same thread. We
reach this goal by instrumenting the network interface with a
specific RSS hash seed [19].

Each thread receives a fraction of the overall traffic. Ac-
cording to custom-defined configurations, packets are repli-
cated, their payloads anonymized, and, finally, forwarded to
output interface(s) connected to the legacy monitors. To avoid
concurrent access to network interfaces, α-MON sets up a
transmitting queue dedicated to each thread on each network
interface, again using the DPDK functionalities. Traditional
techniques for increasing system robustness to failures can be
applied to α-MON. For example, it can be run in multiple
machines for increasing reliability, as soon as traffic is steered
accordingly (i.e., consistently sending packets of a flow to
the same α-MON instance). In case of very critical setups, it
would be possible to replicate two identical α-MON deploy-
ments by using multiple span ports or optical splitters.

4We define a flow by the usual 5-tuple.

4

C. Anonymization modules

We design α-MON to be modular and flexible. As such,
the anonymization functions build a processing pipeline. This
approach eases the configuration of anonymization policies
and allows new modules to be integrated into the system with
little effort. α-MON supports multiple configurations, which
differ, e.g., for encryption keys and anonymization pipeline.
α-MON takes care of making copies of packets and performs
the desired steps on each pipeline before forwarding packets
to a consumer. This design allows deployments in which
different consumers require different anonymization policies,
e.g., security monitors receive original packets, while passive
monitors receive fully-anonymized packets.

Currently, α-MON implements the following modules to
search and anonymize identifiers and quasi-identifiers con-
tained in the traffic:

Layers 5-7: The key novelty of α-MON resides in the
mechanisms for handling quasi-identifiers in application-layer
protocols. α-MON implements a classification engine based
on Deep Packet Inspection to identify popular protocols. In
its current implementation, α-MON supports quasi-identifiers
contained in TLS, DNS, and HTTP protocols. In particular,
α-MON can apply z-anonymity on the found FQDNs, which
are deleted from packets in case they are not z-private. α-MON
can also apply z-anonymity on second-level domains – i.e., the
FQDNs truncated after the top-level domain.5 In this modality,
α-MON releases the FQDN if not z-private. In case it is z-
private, it checks if the second-level domain is not, and, in
case, α-MON truncates the FQDN to the second-level domain.
Similarly, any field of protocol headers could be subjected to
z-anonymity, with customized z and ∆T parameters. Alterna-
tively, the fields can be obfuscated by default (i.e., treated as
an identifier).

Layer 4: α-MON keeps a table to track TCP and UDP
flows, allowing per-flow anonymization policies. Tracking
flows is fundamental for consistent layer 5-7 anonymization.
α-MON currently does not modify L4-headers, but one could
easily implement a mechanism for obfuscating potentially
sensitive L4 information (e.g., rarely used TCP options).

Layer 3: α-MON considers client IP addresses as
identifiers and anonymize them using the CryptoPAN algo-
rithm [20], [7]. CryptoPAN encryption keys can be static or
randomly rotated at fixed time intervals. α-MON allows the
administrator to restrict the addresses that undergo anonymiza-
tion to specific subnets, e.g., targeting only IP addresses of
clients in the administered network. It supports IPv4 and IPv6.
IP addresses that are not identifiers (e.g., server IP addresses)
can be treated as quasi-identifiers and undergo z-anonymity.

Layer 2: α-MON supports the removal of MAC ad-
dresses. Alternatively, as routers generally modify MAC ad-
dresses once they forward the packets, α-MON can store a
timestamp in place of the MAC headers. This mechanism
allows consumers to get timestamps of the moment packets
entered α-MON, thus increasing the precision.

Finally, α-MON implements a default policy to completely
drop the payload of specific/unknown protocols at any layer

5For example private.example.com becomes example.com.

Hash(ID)

BitMap

Hash(QuasiID)

ID-LRU
QuasiID1_1

QuasiID1_2

QuasiID1_3

ID1 ID2 ID3 ID4 ID5 … IDm

Cnt(QuasiID)
oldest_ts

0/1
Time

Active
LastSeen

ID1 - T1

ID58 - T2

ID5 - T3

IDn - Tj

* Head

* Tail

Contains

Points to…

Mutex1 Mutex2 … MutexN Mutex for
access the listQuasiID1 QuasiID2 … QuasiIDN

QuasiID-LRU

Fig. 3: Data structure used to handle quasi-identifiers.

– e.g., forwarding only anonymized L3 or L4 headers to
consumers while removing L5-7 payloads.

D. z-anonymity implementation and data structures

We now describe the data structures used to implement
traffic anonymization at tens of Gbit/s. To reach high speeds,
it is necessary to carefully design suitable data structures that
avoid expensive global synchronizations. We focus on the most
challenging data structures.
α-MON includes a dedicated module for z-anonymity.

When processing a packet from a user identified by ID and
containing the quasi-identifier QuasiID, α-MON must decide
whether to keep QuasiID or hide it. The decision is based
on the counter Cnt(QuasiID) of users sharing the QuasiID
in the time window ∆T .

To keep track of these counters, we rely on the specif-
ically designed data structure depicted by Figure 3. As z-
anonymity must globally count the number of users sharing
each QuasiID, the data structure must be shared between
all threads. Therefore, α-MON needs to handle concurrent
accesses, which is a potentially expensive operation. Its core
is composed of a shared hash table Hash(QuasiID), in which
each bucket is protected by a Mutex lock to handle concurrent
accesses. A list handles hash collisions, organized as a Least
Recently Used (LRU) structure for efficiency – QuasiID-LRU
in the figure. Each entry in the LRU contains the informa-
tion related to a quasi-identifier value (QuasiID). Beside
metadata, it contains a second LRU, the ID-LRU list, that
stores the ordered set of users sharing the QuasiID, along
with the timestamp of respective last occurrence. This ID-
LRU is instrumental for purging those IDs whose occurrences
happened more than ∆T time ago.

The metadata for QuasiID contains pointers to both head
and tail of the ID-LRU (illustrated by orange arrows), the old-
est timestamp at which QuasiID has been observed and the
counter of unique IDs currently active. A second inner hash
table guarantees O(1) access to ID-LRU elements (illustrated
by blue arrows) using the ID as key in Hash(ID).

When a α-MON thread has to decide whether to anonymize
or not the quasi-identifier value QuasiID, it first accesses
the hash table Hash(Quasi-ID). If QuasiID is empty, the
corresponding entry is created; otherwise, α-MON looks for

5

QuasiID through the collision list. Once found (or newly
created), α-MON updates the QuasiID-LRU of the collision
list, moving the current item to the top. Next, it updates
the corresponding metadata for the QuasiID. Specifically,
α-MON checks if the user ID is already listed among those
that share QuasiID in the past ∆T window. If such ID is
present, its timestamp is updated to the current time. If not, the
new ID is added to the ID-LRU, and the counter Cnt(QuasiID)
of users sharing QuasiID is increased. α-MON also goes
through the ID−LRU and deletes IDs older than ∆T . The
Cnt(QuasiID) is decreased consequently.

At last, α-MON decides whether to anonymize QuasiID
based on the counter of the number of active users. If it is
smaller than z, α-MON replaces the quasi-identifier value with
random bytes.

Note that we need to purge from the data structure those
entries older than ∆T . When accessing a Hash(QuasiID)
bucket, α-MON expurges the expired entries in the QuasiID-
LRU with a controllable probability P . This scheme limits
extensive cleaning operations at each access. When cleaning
QuasiID-LRU, α-MON controls the ID−LRU for IDs older
than ∆T . Again, the Cnt(QuasiID) is decreased consequently.
If the counter indicates that the current QuasiID is no longer
in use, α-MON deletes it altogether.

Note that α-MON can perform most operations in O(1)
for each packet, thanks to the two hash tables used to access
quasi-identifier values and per-identifier counters. This design
allows high processing speeds as we will show in Section V-B.

E. Auxiliary data structures

α-MON implements an efficient structure to support per-
flow management. This structure is instrumental for applying
consistent anonymization decisions based on flow state – e.g.,
removing the payload of specific protocols (e.g., HTTP) or
parsing application layer protocols whose fields are split across
multiple packets. The data structure for active flows follows
the same ideas used by the authors of [21]. It builds on a
hash-based data structure that provides O(1) accesses to the
per-flow metadata.

Given the current packet, the dedicated module performs
a search in the flow table to verify the action performed
previously: if the first packet of the flow has been subject to
anonymization, the current one follows the same procedure. In
the case of a new stream, α-MON creates the appropriate flow
entry and checks how to anonymize the packet. The module
includes a lazy garbage collection system for expired flows,
similar to the one used in the z-anonymity module.

Finally, α-MON implements caching to speed up the
anonymization of IDs, e.g., maintaining a per-thread cache
of the anonymized IP addresses computed by CryptoPAN. In
Section V, we show that this design allows α-MON to scale
to several Gbit/s of traffic.

IV. THE IMPACT OF z-anonymity ON TRAFFIC
MEASUREMENTS

We now quantify to what extent the traffic anonymized
with the z-anonymity is useful to provide accurate network

measurements. We aim to understand how common traffic
analyses are affected when run behind an α-MON deployment.
To this end, we perform a case study in which users (identified
by client IP addresses) contact several hosts characterised by
FQDNs (and second-level domains), which are considered
quasi-identifiers.

We use a traffic trace collected on an operational network
including more than 8 000 users who generate several millions
of packets per second of traffic. The trace is three-days
long, during which the users contacted 135 k (45 k) FQDNs
(second-level domains). The FQDNs are present in TLS,
DNS, and HTTP headers. We apply z-anonymity directly on
FQDNs or on the corresponding second-level domains. Client
IP addresses are used as identifiers. For these analyses, we
implement an offline version of z-anonymity to process the
traces, obtain statistics and show how these statistics vary with
different parameters.

A. Anonymized volumes

We first analyze the fraction of traffic that z-anonymity
would obfuscate when considering different values for z and
∆T . We show results in Figure 4 for the case of z-anonymity
on FQDNs and in Figure 5 for second-level domains. First,
consider the fraction of FQDNs that z-anonymity would ob-
fuscate in Figure 4a. We notice that z = 2 already causes
≈ 75% of the FQDNs to be obfuscated. When z = 10, the
fraction increases to 90%. ∆T has a small overall impact.
Similar considerations hold for the case of second-level do-
mains (Figure 5a). Here, on the one hand, the coarser data
granularity makes it more likely for a domain to pass z-
anonymity. However, we find a smaller number of quasi-
identifiers (45 k instead of 135 k), which balances the picture,
allowing a similar share of domains to pass z-anonymity.

Different is the picture if we consider the number of flows
(Figure 4b) and the byte-wise volume (Figure 4c) carried by
flows for which the FQDN gets obfuscated. With z = 2, z-
anonymity obfuscates the FQDN in only 10% of the flows,
which account for ≈ 25% of the traffic volume. Most of the
obfuscated FQDNs are used by CDNs and include digits or
random strings in the sub-domains. Taking instead the second-
level domains as quasi-identifiers reduces the percentage of
obfuscated bytes to negligible numbers for z = 2. This is
caused by the nature of Internet traffic, where the majority of
flows are directed towards a limited set of services [22].

The impact of a large ∆T is more pronounced for high
values of z, allowing a larger number of flows to avoid
obfuscation. For example, if we set z = 100, a ∆T = 30min
results in 60% of obfuscated flows; this fraction decreases to
52 (46)% if we set ∆T = 1h (2h). If we consider second-
level domains (Figure 5b and Figure 5c), we observe a similar
picture. Considering the byte-wise volume, notice how the
fraction of obfuscated traffic decreases, mainly due to the
aggregation of CDN nodes and randomly generated domains
to a single quasi-identifier.

In a nutshell, popular domains that carry little sensitive
information are responsible for the majority of traffic. Letting
their names in clear poses little threats for privacy, while

6

100 101 102 103

z

0

25

50

75

100

O
b

fu
sc

at
ed

D
om

a
in

s
[%

]

∆T = 2 h

∆T = 1 h

∆T = 30 min

(a) Domains

100 101 102 103 104

z

0

25

50

75

100

O
b

fu
sc

at
ed

fl
ow

s
[%

]

(b) Flows

100 101 102 103 104

z

0

25

50

75

100

O
b

fu
sc

a
te

d
vo

lu
m

e
[%

]

(c) Traffic volume

Fig. 4: Fraction of traffic obfuscated by z-anonymity with different values of z and ∆T . z-anonymized field: FQDN

100 101 102 103

z

0

25

50

75

100

O
b

fu
sc

a
te

d
D

o
m

ai
n

s
[%

]

∆T = 2 h

∆T = 1 h

∆T = 30 min

(a) Domains

100 101 102 103 104

z

0

25

50

75

100

O
b

fu
sc

a
te

d
fl

ow
s

[%
]

(b) Flows

100 101 102 103 104

z

0

25

50

75

100

O
b

fu
sc

at
ed

vo
lu

m
e

[%
]

(c) Traffic volume

Fig. 5: Fraction of traffic obfuscated by z-anonymity with different values of z and ∆T . z-anonymized field: Second-level
domain.

still being very important for increasing visibility of network
monitors. z-anonymity obfuscates the vast majority of FQDNs
or second-level names that carry little traffic while allowing
the popular names to be monitored.

B. Impact of z-anonymity on traffic accounting

As a use case on accounting, we study how z-anonymity
changes the traffic volume measured for the most popular
services on the network. We assume that services can be
identified by their second-level domains. In Figure 6a we show
the number of flows for the top-15 services as measured on the
original trace and after z-anonymity with different values of
z. In this experiment, ∆T is fixed to 1 hour, and z-anonymity
is applied to the FQDN.

It is no surprise that the most popular service is google.com,
followed by common services/platforms such as Facebook and
Apple. The red bar represents the values measured on the
original trace that we use as a baseline. If the traffic undergoes
z-anonymity, the measured volume slightly decreases, but in
almost all cases, the drop is limited to 10 − 15% even with
high values of z (yellow and cyan bar). In other words, z-
anonymity would introduce a small measurement error in terms
of traffic volume for these services, e.g., because less z users
have requested their FQDNs in some ∆T (1 hour).

For a few cases, the difference is more pronounced;
see, for example, apple-dns.com. In these cases, a single

service/second-level domain holds a very large number of
FQDNs, making them more likely to be anonymized. In-
deed, in the case of apple-dns.com, we observe 1 044 sub-
domains, most of them differing uniquely for a two-digit code.
Not shown in the figure, we observe a similar phenomenon
for the CloudFront CDN, for which we observe 3 115 sub-
domains, each referring to a hosted website. In these cases,
the measurement error introduced by z-anonymized increases.
We can solve the issue running z-anonymity on the second-
level domains directly – i.e., configuring α-MON to release
the second-level domain if it passes the z-anonymity checks.
With this setup the measured volume is practically equal to
the original traces, as we show in Figure 6b. Here, the users’
privacy is still preserved, as α-MON hides the sub-domains,
releasing only the z-private second-level domains. Yet, the
value of the anonymized traces is increased substantially.

We complete the above analysis with Figure 7, in which
we broaden the bounds of pictures presented before. In the
figure, we show with the red solid line the traffic volume
(in terms of flows) for all services in the trace exceeding a
minimum threshold of 1 000 flows (more than 1 000 names).
They are sorted by popularity. The blue dashed line represents
the volume as measured after z-anonymity with z = 10 and
∆T = 1 h. We are interested in the deviation between the
two lines, representing the measurement error. Considering z-
anonymity on FQDNs (Figure 7), the error is minimal for the

7

google.
com

faceb
ook.co

m

googlea
pis.c

om

apple.
com

micr
osoft.c

om

fbcd
n.net

doublec
lick

.net

whatsa
pp.net

gsta
tic

.co
m
sky.i

t

skycd
n.it

apple-
dns.n

et

adnxs.c
om

googlev
ideo.co

m

akadns.n
et

0.00

0.25

0.50

0.75

1.00

1.25

F
lo

w
s

[M
]

Original

z = 10

z = 20

z = 50

z = 100

(a) z-anonymity on FQDN

google.
com

faceb
ook.co

m

googlea
pis.c

om

apple.
com

micr
osoft.c

om

fbcd
n.net

doublec
lick

.net

whatsa
pp.net

gsta
tic

.co
m
sky.i

t

skycd
n.it

apple-
dns.n

et

adnxs.c
om

googlev
ideo.co

m

akadns.n
et

0.00

0.25

0.50

0.75

1.00

1.25

F
lo

w
s

[M
]

Original

z = 10

z = 20

z = 50

z = 100

(b) z-anonymity on second-level domain

Fig. 6: Per-service volume measured from an z-anonymized
trace.

top-ranked domains, as already shown by the blue bars in
Figure 6a. The deviation is still limited for the services with
sizeable traffic, never exceeding an order of magnitude for
those with at least (around) 10 k flows – top-200 names, left
part of the figure. Clearly, the less frequent services are, the
higher the chances α-MON anonymizes their FQDNs, thus
increasing the measurement error. If we apply z-anonymity on
second-level domains directly, Figure 6b shows that we obtain
more reliable measurements also for less popular services.
Also in this case, the error becomes high for infrequent
services or those accessed by a very small number of users
(see right side of the figure).

In summary, volumetric statistics are still reliable when
targeting heavy-hitter services. For less frequent services,
α-MON introduces a larger measurement error, as enforcing
z-anonymity may lead to most occurrences of the associated
FQDNs (or second-level names) to be obfuscated. By tuning
z and ∆T , one can regulate the trade-off between privacy and
data utility.

C. Load on α-MON data structures

An important question for practically implementing z-
anonymity is the number quasi-identifiers that z-anonymity has
to track over time. This is fundamental to quantify its memory
footprint and correctly size α-MON internal hash tables (see

100 101 102 103

Domain rank

100

101

102

103

104

105

106

107

F
lo

w
s

Original

z = 10

(a) z-anonymity on FQDN

100 101 102 103

Rank

100

101

102

103

104

105

106

107

F
lo

w
s

[M
]

Original

z = 10

(b) z-anonymity on second-level domain

Fig. 7: Per-service flows measured on the original and on a
(z = 10)-anonymized trace.

Wed, 12
Thu, 00

Thu, 12
Fri, 00

Fri, 12
Sat, 00

Time

0

50 k

100 k

150 k

200 k

D
om

ai
ns

2 h 1 h 30 min

M
em

ory usage [G
B

]

16.17

12.26

8.53

4.45

0

Fig. 8: Domains known by z-anonymity with different ∆T , in
relation with the memory needed by α-MON.

Section III-D) as well as the ∆T parameter. For each quasi-
identifier, indeed, we need to track the set of users associated
in the last ∆T window.

Taking again FQDNs as an example, we consider the size
of the set that z-anonymity must track – i.e., those FQDNs
observed in the last ∆T interval. Figure 8 depicts results over
time for our trace, considering three possible values for ∆T .
After a short warm-up phase (not visible at this scale), the
curves follow the daily trend of network usage. We observe
a peak during evenings, when ≈ 150 000 unique FQDNs are

8

Flows (M) Flows per-class (%) Pktsize
Trace TCP UDP HTTP HTTPS P2P oth avg
ISP-FULL 3.08 7.76 10.8 8.2 46.2 34.7 716
ISP-HDR 3.08 7.76 - - - - 54
DNS - 14.07 - - - 100 172

TABLE I: Packet traces.

seen in a two-hour interval – solid red line, see leftmost y-axis.
No more than 100 000 (60 000) FQDNs appear with a ∆T of
1 hour (30 minutes). During the night, when traffic reduces,
the number of active FQDNs is more than halved. We observe
a sudden peak on the evening of the third day (a Friday) with
almost 200 000 unique domains accessed in two hours. The
rightmost y-axis of Figure 8 reports the memory footprint of
the QuasiID metadata, considering their actual size in our
implementation. The memory usage is always below 17 GB
for this setup.

Recall that the experiments refer to a traffic trace from
a population of 8 000 users. However, given the nature of
Internet traffic, where most flows are directed to few services,
the set of domain names scales sub-linearly with the number
of users. For example, during the peak hour, 1 000 (or 3 000)
randomly selected users already contact 35 000 (or 60 000)
FQDNs, while all 8 000 users contact 150 000 domains.

V. PERFORMANCE EVALUATION

We now evaluate the performance of α-MON in process-
ing high speed traffic. We aim at evaluating how α-MON
performance scales with the number of cores and the impact
of different conditions, workloads and system parameters. We
follow the standard benchmarking procedures defined in [23]
for throughput tests.

A. Testbed and dataset

We instrument a testbed composed of a Traffic Generator
(TG) and a Device Under Test (DUT). TG and DUT are each
equipped with two quad-port Intel X710 10 Gbit/s network
cards. TG replays traffic traces stored in pcap format, sending
packets to DUT over a first set of 10 Gbit/s links. The DUT
runs α-MON to anonymize network traffic that is sent back
to the TG over a second set of 10 Gbit/s links.

DUT is a high-end server equipped with 4 Intel Xeon Gold
6140M processors and 512 GB of memory. The total number
of physical cores is 72. We disabled hyperthreading to isolate
α-MON performance when varying the number of cores.

The TG is a medium-sized server with no particular require-
ment except for a large amount of memory. Indeed, it is not
trivial to read and send stored traffic traces at tens of Gbit/s
with commercial solid-state drives whose read speed is in the
order of 4-5 Gbit/s. As such, we equipped the TG with 1 TB
of RAM so that it can fit large traces in memory. We use
DPDK-Replay to replay the traces on the selected network
interfaces at the desired rate.6 DPDK-Replay can loop over

6https://github.com/marty90/DPDK-Replay

1 2 3 4 5
Cores

0

10

20

30

40

In
pu

tS
pe

ed
(G

b/
s)

Fig. 9: Performance with four input and four output interfaces
using the ISP-FULL trace.

traces in memory, eventually replacing IP addresses on each
pass, so to allow arbitrary benchmark duration.

We perform experiments using real traffic traces collected
from an operational network (see Table I). Packets are captured
by instrumenting a Point-of-Presence of a European Internet
Service Provider (ISP) that aggregates the traffic of about 8 000
households. We capture raw packets using a passive probe
equipped with several high-end SSD disks.

For the first benchmarks, we use a 1-hour long trace
captured at peak time. We obtain a 575 GB of packets that
we call ISP-FULL. It contains 3.1 M TCP and 7.7 M UDP
flows, with an average packet size of 716 B, for more than
800 M packets. This trace represents the typical workload that
α-MON would face in an ISP network.

We process this trace to keep only up to TCP/UDP headers,
removing payloads. This step results in a second packet trace
– called ISP-HDR– in which packets are truncated to 54 B
on average. We use this trace to benchmark the per-packet
capture, processing and transmission speed of α-MON in a
pessimist scenario composed of lots of small packets.

At last, we collect DNS traffic from the same network for
one day. We use this trace to benchmark the z-anonymity
module since each packet likely contains a QuasiID, e.g.,
a FQDN. This trace is 7.23 GB large, with more than 1 M
packets. We call it DNS trace.

For each experiment, we seek the throughput [23], i.e., the
fastest rate at which the count of frames transmitted by the
DUT is equal to the number of frames sent by the TG. We pro-
gressively increase the TG sending rate using a binary search
process. As we increase speeds, benchmarks require the TG to
perform multiple passes on the original traces. All experiments
are performed with z = 10 and ∆T = 60s. Each benchmark
lasts 3 minutes. We set the hash table Hash(QuasiID) size to
100 000 entries to maintain collision lists reasonably short (cfr.
Figure 8).

B. Horizontal scalability

We first focus on α-MON horizontal scalability to un-
derstand how its throughput increases with the number of
cores. Recall that each core manages an α-MON thread via
DPDK. TG sends traffic to DUT using four 10 Gbit/s links.
The DUT must anonymize packets before forwarding them

9

1 2 3 4 5 6
Cores

0.0

2.5

5.0

7.5

10.0

In
pu

tS
pe

ed
(G

b/
s)

1 Output Feed
2 Output Feeds
4 Output Feeds

(a) ISP-FULL

1 2 3 4 5 6 7 8
Cores

0.0

2.5

5.0

7.5

10.0

In
pu

tS
pe

ed
(G

b/
s)

(b) ISP-HDR

1 2 3 4 5 6 7 8
Cores

0

1

2

3

In
pu

tS
pe

ed
(G

b/
s)

(c) DNS

Fig. 10: Performance with different traces and consumer numbers.

on four output links. For each input interface, we configure
one output feed on a dedicated output interface, thus, avoiding
duplicating packets. Thanks to RSS load balancing, each of
the N cores processes an average 1/N of the traffic from each
input interface – 4/N in total, given we use 4 input interfaces.
This load-balancing scheme makes the throughput to depend
only on the aggregate incoming rate, regardless of the rates
of single input interfaces. We employ the ISP-FULL trace for
this experiment.

We report results in Figure 9, which shows the throughput
versus numbers of cores. When α-MON runs on a single
core, it handles around 10 Gbit/s. In our experiments, the
throughput is equivalent if packets come from a single input
link at line rate or spread on the four interfaces. With two
cores, α-MON sustains 18 Gbit/s, and the performance scales
linearly with additional cores, reaching 38 Gbit/s on four cores.
With just five cores α-MON fully sustains 40 Gbit/s – i.e., all
input interfaces at line rate. Unfortunately, our testbed does
not allow higher rates due to the limited number of network
interfaces, but we expect the performance to further increase
before hitting the PCI bus bandwidth limit [24].

In summary, α-MON sustains ≈ 10 Gbit/s per-core on a
realistic traffic trace. Its performance scales to up 40 Gbit/s
when using just five CPU cores, reaching line rate on all four
input links.

C. Benchmark with other workloads

We evaluate α-MON performance under different work-
loads. We vary both the input traffic mixture and the number
of consumers. In these experiments, the TG sends packets to
the DUT using a single 10 Gbit/s link. We configure α-MON
with one, two, or four output feeds, each of them anonymized
using all available modules, but with different encryption keys.
As such, α-MON not only has to make packet copies, but also
performs all anonymization steps multiple times.

Recall that different traffic classes trigger different α-MON
modules, resulting in performance variations. While the ISP-
FULL trace is a typical workload that α-MON could face
at an edge network, DNS represents an extreme scenario
in which every packet triggers the z-anonymity module for
FQDN. ISP-HDR is a second extreme scenario since all
packets are small. It should not be observed in practice except
for anomalous situations, e.g., during cyber attacks. ISP-HDR

stresses α-MON packet replication capability toward multiple
consumers as well as L2-L4 anonymization modules.

We show results in Figure 10. We report throughput for
different traffic traces in separate figures, where lines indicate
the number of output feeds. X-axes show the number of cores.

Figure 10a depicts the performance with the ISP-FULL
trace. As already shown previously, a single core sustains
10 Gbit/s with a single consumer (solid red line). The per-
formance is reduced when α-MON has to feed multiple con-
sumers. For a single CPU core (leftmost points), the through-
put is reduced to 4 Gbit/s with two consumers (dashed blue
line) and 2.4 Gbit/s with four consumers (dashed green line).
The extra load imposed by the need for duplicating packets
causes this degradation: DPDK allows zero-copy processing
only when single output is required. Here, α-MON needs 3
cores to feed 2 consumers with 10 Gbit/s each, and 6 cores to
feed 4 consumers. Note also how the throughput scales linearly
with the number of cores in all cases. Here, contention on the
Hash(QuasiID) has little impact.

Next, we use the ISP-HDR trace to stress α-MON packet
copying, processing and forwarding. Whereas the TG sends
out 1.7 million packets per second (Mpps) when replaying the
ISP-FULL trace at 10 Gbit/s, ISP-HDR results in 23 Mpps.
α-MON throughput naturally decreases. A single core handles
no more than 2 Gbit/s in this scenario (Figure 10b - red curve).
However, thanks to the scalable architecture based on RSS,
α-MON throughput increases linearly with the number of
cores – and 5 cores handle 10 Gbit/s when outputting traffic to
a single consumer (red line). Similar to the previous scenario,
the throughput is reduced when having multiple consumers
(blue and green lines). A single core can sustain 1 (0.7) Gbit/s
of the ISP-HDR trace with 2 (4) consumers. Yet, throughput
continues to grow linearly with the number of cores. As such, a
proper resource provisioning would allow α-MON to perform
its tasks without loss also in these scenarios.

Next, we consider the DNS trace to stress the z-anonymity
module. In Figure 10c we see that throughput further de-
creases. Remind that packets undergoing z-anonymity generate
updates on various data structures to track the set of users
associated with each quasi-identifier. Moreover, parsing the
payload to recover quasi-identifiers is time consuming too
(e.g., to extract FQDNs in DNS payloads). Figure 10c shows
that a single core sustains 0.6 Gbit/s with one output feed.

10

Del-
Payload

Pkt-M
ng

Pkt-C
ap

DPDK-Lib

z-A
non

Addr-M
ng

Dns-P
ars

Http
-Pars

Tls-
Pars

0

10

20

30

40
R

u
n

T
im

e[
%

] DNS

ISP-FULL

Fig. 11: Percentage of time spent on the most impacting
modules.

Again, the throughput increases almost linearly with the num-
ber of cores, and eight cores can handle 3 Gbit/s of DNS traffic.
Here too, α-MON incurs a penalty for the packet copying in
case of multiple consumers. The slightly sublinear scalability
is due to the Mutex on the Hash(QuasiID) which slows down
processing when a large number of cores are used.

In summary, α-MON can process 10 Gbit/s of typical ISP
traffic with one core. Additional output feeds bring extra costs
due to packet copying. A handful of cores allows achieving
line rate in different scenarios. Worst-case scenarios, such as
pure DNS traffic and millions of packets without payload,
require a proper dimensioning of the system. α-MON scales
linearly with the number of cores in all scenarios.

D. α-MON sub-module performance

We next show the impact on performance of α-MON
components, by dissecting their execution time under different
workloads. To this end, we instrument each α-MON sub-
module with counters that use the CPU Time Stamp Counter
to measure the elapsed time with a negligible performance
penalty.7 We then make experiments with the ISP-FULL and
DNS traces, configuring α-MON with a single output feed, a
single core, and replaying traffic at the sustainable rate – i.e.,
10 Gbit/s for ISP-FULL and 0.6 Gbit/s for DNS.

Figure 11 shows the percentage of time spent on the main
α-MON modules. We first notice how the nature of the traces
determines different execution patterns. With ISP-FULL (blue
bars), removing the payload from packets of insecure protocols
(e.g., HTTP) absorbs most of the time due to a large number of
memory write operations. Differently, with DNS (red bars), the
z-anonymity module is invoked at each packet and accounts
for 28% of the total execution time (it is less than 1% for
ISP-FULL). The packet capture (with DPDK) and general
management routines in both cases have a significant impact,
larger for DNS due to the smaller size of packets (see Table I)
and, thus, higher packet rate. Finally, note how IP address
anonymization with CryptoPAN and protocol header parsing
always have a marginal impact.

7The CPU Time Stamp Counter is a CPU register, thus, very fast to read.

1 2 3 4 5 6 7 8 9
Cores

0.0

2.5

5.0

7.5

10.0

In
pu

tS
pe

ed
(G

b/
s)

1 Output Feed
2 Output Feeds
4 Output Feeds

Fig. 12: Performance when applying z-anonymity on IP ad-
dresses and FQDNs (ISP-FULL trace).

E. z-anonymity on other protocol fields

We now evaluate α-MON performance when applying z-
anonymity on a wider range of protocol fields. Indeed, as
described in Section III, the z-anonymity module is flexible
and can operate on different protocol fields, from FQDNs
contained in DNS, TLS and HTTP, to the IP addresses of the
contacted servers. In this experiment, differently from the pre-
vious cases, we make use of this feature and configure α-MON
to apply z-anonymity on both FQDNs and IP addresses.8

This imposes a high load on data structures. Indeed, the z-
anonymity hash table is loaded with additional QuasiIDs
and the flow hash table needs to be used to make consistent
decisions on a per-flow basis.
α-MON performance slightly decreases, as we show in Fig-

ure 12, in which we report the sustainable rate with different
numbers of output feeds. α-MON achieves line rate with 2, 4
and 9 cores with 1, 2 and 4 output feeds, respectively. When
z-anonymity runs on FQDNs only (see Figure 10a), only 1,
3 and 6 are needed. In short, adding an additional field to z-
anonymity decreases performance. As IP addresses are present
in every single packet, decisions must be taken much more
often than for FQDNs only. z-anonymity on IP address entails
a ≈ 30% performance drop due to the higher number of
operations.

F. Tuning of the z-anonymity data structure

Here we study the impact of the data structure size for the z-
anonymity module. Indeed, our implementation builds on the
(large) hash table Hash(QuasiID) used to accommodate the
quasi-identifiers, and, for each quasi-identifier, the ordered list
of associated users in the last ∆T . Collisions on the hash table
are handled with lists, whose length should be kept as short
as possible to avoid performance impairments. This section
evaluates the impact of the hash table size on the list length and
the time z-anonymity spends iterating on them. To this end,
we run multiple experiments using the DNS trace and varying
the hash table size. During the experiments, we record, for
each access to the z-anonymity data structure, the length of the
collision list (if any) and the position at which α-MON found

8α-MON applies z-anonymity on server IP addresses only, obfuscating
internal client addresses with CryptoPAN.

11

0 10 20 30 40 50

Collision list length

0.00

0.25

0.50

0.75

1.00

C
D

F 104

5 · 104

105

106

(a) Length of the collision list for each QuasiID

0 5 10 15 20 25 30

Hit depth

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

(b) Depth of hits in the collision list

Fig. 13: Analysis of the behaviour of Hash(QuasiID) collision list. Lines represent different hash table sizes.

the matching quasi-identifier. The latter metric is particularly
important given that α-MON handles collision lists in an LRU.
As such, it is likely to find popular quasi-identifiers on the top
of the list, avoiding exhaustive scans.

Figure 13a reports the distribution of the collision list length
with different hash table sizes, from 10 k to 1 M elements.
Clearly, a hash size much smaller than the number of quasi-
identifiers leads to long collision lists. When the size is 10 k
(red solid line), lists are 25-element long in median, but
can reach up to 40 elements. Large hash sizes reduce the
length of collision lists, and we notice that quasi-identifiers are
uniformly distributed among all hash buckets (not shown in
the figure). However, collisions happen by chance, and, even
with a 10 M elements (yellow dashed line), we sporadically
find a handful of collisions.

Fortunately, α-MON does not need to fully scan collision
lists, as a searched quasi-identifier is usually much before the
tail of the list. Only for still unknown items (a mismatch), the
list must be scanned exhaustively to ensure the quasi-identifier
is not already present. In Figure 13b, we report the distribution
of the position in the list of the matching element for each
access to the data structure. Comparing it with Figure 13a,
we notice how in most cases α-MON does not scan the lists
entirely. Even with a small 10 k hash size (red solid line), on
80% of cases the matching item is found on the first or second
position, and in less than 5% the search goes further than the
20th position. With large sizes, the probability of evaluating
more than 10 list elements becomes negligible.

In summary, the hash table must be sized to the deployment
scenario to prevent collision lists from growing excessively.
If properly done, Hash(QuasiID) allows O(1) access, with
reasonably short collision lists, thanks also to the LRU policy
which saves exhaustive scans.

VI. DISCUSSION ON THE z-ANONYMITY APPROACH

z-anonymity represents a new proposal for anonymizing
sensitive information in network traffic. It shares with k-
anonymity, l-diversity and t-closeness the idea that quasi-
identifiers must be somehow controlled to prevent users’
re-identification. No scheme can provide a guarantee of
anonymity, and all schemes trade privacy with utility [25].
Indeed, publishing any data results in a potential privacy

loss for individuals, and any anonymization technique makes
data imprecise causing losses in potential utility. At last,
efficient algorithms that provide anonymized data with such
properties [26] are not well-fit for real-time and online usage as
they make decisions based on the global distribution of quasi-
identifiers. Like traditional approaches, z-anonymity provides
a trade-off and not full privacy guarantees. It however allows
tuning the desired trade-off between privacy and data utility.

With z-anonymity, we propose a novel anonymization prop-
erty that can be achieved in real-time and in an online fashion.
As such, it is well-suited for network traffic anonymization. k-
anonymity and similar approaches work on tabular data where
the entire database (or a batch of data) are readily available.
We instead want to anonymize a continuous stream of data and
output the results in real-time. Notice that this differs from
k-anonymity over data streams [27] – i.e., a system capable
of applying k-anonymity on a stream database, where win-
dows of data are considered. Other proposals [15], [16] work
similarly, buffering data and releasing anonymized batches.
Such approaches do not apply to our context since we cannot
buffer lots of data while performing high-speed measurements
in the network. Thus, we need to decide on a per-datum basis.
Every decision has to be made in an atomic fashion, and
the processed datum must be immediately available for later
processing.
z-anonymity does not require to buffer data and scales very

efficiently. As such, it is suitable for real-time deployments.
To achieve that, z-anonymity is applied to each quasi-identifier
in isolation as a performance trade-off. If the combination of
multiple quasi-identifiers could lead to user re-identification,
α-MON must be explicitly set to apply z-anonymity to the field
combination. In fact, α-MON does not automatically search
for such field combinations to increase performance.

Finally, in z-anonymity, the first z − 1 user appearing
in a ∆T would have their quasi-identifier values removed,
while the z-th user would be the first one to have it visible.
Nevertheless, she belongs to a set of at least z users, whose
z − 1 are unknown. In this sense, z-anonymity reduces the
visibility of quasi-identifiers in the output stream.

VII. RELATED WORK

Passive network monitoring threats users’ privacy [31].
Because of that, we witness significant efforts to prevent infor-

12

TABLE II: Comparison of α-MON and alternatives.

α-MON ONTAS [28] TCPdPriv [29] TCPurify [30]
HW Implementation X
SW Implementation X X X
Online Anon. X X X X
Stateful Anon. X
L2 X X
L3 X X X X
L4 X X
L5-7 X

mation leakage from the network, and these efforts have been
mostly centered around the deployment of encryption [32],
[33]. For example, all newest web protocols by the time of
writing (e.g., QUIC and HTTP/2) are built to run seamlessly
over TLS. These initiatives reduce the amount of information
exposed during the monitoring [34]. However, users’ privacy
can still be exposed in certain fields of Internet protocols.
Server IP addresses and FQDNs are two prominent examples,
which may leak the sites visited by users. As such, those
must be considered quasi-identifiers. Recent initiatives aim at
encrypting plain-text FQDNs seen in traffic, e.g., encrypting
DNS [35] and Server Name Indications (SNIs) in TLS [36].
However, not all users will adopt these technologies soon.
In any case, those who monitor the network for legitimate
reasons must also protect the users’ privacy, as mandated by
regulations [6].

Several works propose techniques to anonymize traffic by
obfuscating fields of protocol headers. The goal is to allow
accurate network monitoring without threatening users’ pri-
vacy. We can roughly group these techniques into (i) address
anonymization and (ii) payload anonymization.

Address Anonymization: The simplest approach to
achieve anonymization of IP addresses is the truncation of
addresses. Everything, but the first n bits of the addresses (typ-
ically 8, 16 or 24), are set to zero. Truncation only partly miti-
gates the problem, as it is still possible to determine the subnet
or the organization the truncated addresses belong to. More
sophisticated techniques propose a prefix-preserving pseudo-
anonymization, in which addresses are completely shuffled,
but preserving the structure of subnets [37], [38], [39]. Crypto-
PAN is perhaps the most popular prefix-preserving algorithms
for IP addresses anonymization [20], [7]. The mappings be-
tween the original and anonymized addresses are determined
by a passphrase and a symmetric block cipher. Here we rely
on Crypto-PAN for IP address anonymization. Finally, in 2020
Kim et al. propose ONTAS [28], a flexible traffic anonymizer
implemented directly in PISA-based programmable switches,
which achieves high speed while anonymizing IP and MAC
addresses.

Payload Anonymization: Payload anonymization is more
complex, as personal information may leak from different and
complex protocols. Anonymization tools like TCPdPriv [29]
and TCPurify [30] truncate TCP and UDP payloads, to
remove all information contained in application layer proto-
cols. This simple “reveal nothing” policy may lead to poor
measurements. Other works propose sophisticated frameworks
to handle specific application-level protocols. The authors

of [40] remove sensitive information without affecting the
payload. Packets are reconstructed into data stream flows, and
application-level parsers modify the data streams as specified
by a policy written in a high-level language. They provide
limited anonymization primitives (constant substitution, se-
quential numbering, hashing, prefix-preserving, and adding
random noise), forcing the user to write her own functions.
The authors of [41] propose a programmable anonymization
tool based on BPF filters, allowing the user to choose different
actions according to the received protocol (IP, TCP, UDP,
ICMP, HTTP or FTP).

Differently from these approaches, we explicitly target
an operational deployment, in which anonymization must
be achieved in real-time at tens of Gbit/s. Inspired by k-
anonymity, we design a modular and flexible architecture to
support z-anonymity. We focus on scalability and employ
state-of-the-art packet capture techniques to make the system
deployable on high-speed networks. Table II compares the
features of α-MON against the three closest previous proposals
described above, namely ONTAS [28], textttTCPdPriv [29]
and TCPurify [30], highlighting the novel capabilities of
α-MON.

VIII. CONCLUSION

In this paper, we presented α-MON, a flexible and modular
tool to anonymize network traffic according to a rich set
of policies. We designed α-MON to be flexible and provide
anonymized traffic to multiple legacy monitors with different
traffic visibility requirements, from security monitors to simple
passive meters. A key innovation in α-MON is the implemen-
tation of z-anonymity, a stream-based traffic anonymization
technique that obfuscates protocol fields that can be uniquely
traced back to a small sets of users. α-MON can search for
them, for example, in the FQDNs present in DNS, TLS and
HTTP traffic.

We designed a scalable architecture and efficient data struc-
tures to implement z-anonymity at line-rate speed on multiple
10 Gbit/s links. α-MON reaches high throughput in typical
scenarios with few CPU cores. Even in worst-case scenarios
α-MON scales linearly with the number of cores, thanks to
its design based on DPDK. We quantified the impact of z-
anonymity on common traffic measurements, showing that
it introduces negligible measurement errors. For example, if
applied before accounting traffic of websites, only for very
infrequent sites the measured values would substantially differ
from correct values due to the anonymization.
α-MON is available to the community as open-source soft-

ware. As privacy and privacy-preserving analytics are gaining
momentum, we believe α-MON can help researchers, network
administrators and practitioners maintain visibility on network
traffic while preserving users’ privacy at the same time.
Future work includes the development of mechanisms to find
identifiers and quasi-identifiers in network traffic automatically
as well as the analysis of the impact of z-anonymity on the
operations of different classes of legacy monitors.

13

ACKNOWLEDGMENTS

The research leading to these results has been funded by
the Huawei R&D Center (France), the EU Project PIMCity
(Grant N. 871370) and the SmartData@PoliTO center for Big
Data technologies. We want also to thank the Polito’s IT staff
for the feedback and support.

REFERENCES

[1] A. D’Alconzo, I. Drago, A. Morichetta, M. Mellia, and P. Casas, “A
survey on big data for network traffic monitoring and analysis,” IEEE
Transactions on Network and Service Management, vol. 16, no. 3,
pp. 800–813, 2019.

[2] D. Apiletti, E. Baralis, T. Cerquitelli, P. Garza, D. Giordano, M. Mellia,
and L. Venturini, “Selina: A self-learning insightful network analyzer,”
IEEE Transactions on Network and Service Management, vol. 13, no. 3,
pp. 696–710, 2016.

[3] L. Vassio, D. Giordano, M. Trevisan, M. Mellia, and A. P. C. da Silva,
“Users’ Fingerprinting Techniques from TCP Traffic,” ACM SIGCOMM
Workshop on Big Data Analytics and Machine Learning for Data
Communication Networks, 2017.

[4] G. Alotibi, N. Clarke, F. Li, and S. Furnell, “User Profiling from
Network Traffic via Novel Application-Level Interactions,” International
Conference for Internet Technology and Secured Transactions (ICITST),
2016.

[5] A. S. Khatouni, M. Trevisan, L. Regano, and A. Viticchié, “Privacy
issues of isps in the modern web,” in 2017 8th IEEE Annual Infor-
mation Technology, Electronics and Mobile Communication Conference
(IEMCON), pp. 588–594, 2017.

[6] European Commission, “REGULATION (EU) 2016/679 OF THE EU-
ROPEAN PARLIAMENT AND OF THE COUNCIL of 27 april 2016
on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing
directive 95/46/ec (General Data Protection Regulation),” April 2016.
Article 1, Subsection: 18, 23, 24, 28, 29, 30, 58.

[7] J. Xu, J. Fan, M. H. Ammar, and S. B. Moon, “Prefix-Preserving IP
Address Anonymization: Measurement-based Security Evaluation and a
New Cryptography-based Scheme,” IEEE International Conference on
Network Protocols (ICNP), 2002.

[8] P. Samarati and L. Sweeney, “Protecting Privacy when Disclosing
Information: k-Anonymity and Its Enforcement through Generalization
and Suppression,” Technical Report SRI-CSL-98-04, 1998.

[9] T. Favale, M. Trevisan, I. Drago, and M. Mellia, “α-MON: Anonymized
Passive Traffic Monitoring,” in to appear in the 32th International
Teletraffic Congress, 2020.

[10] N. Jha, T. Favale, L. Vassio, M. Trevisan, and M. Mellia, “z -anonymity:
Zero-Delay Anonymization for Data Streams,” in To appear in the 2020
IEEE International Conference on Big Data, 2020.

[11] L. Sweeney, “k-anonymity: a Model for Protecting Privacy,” Interna-
tional Journal on Uncertainty, Fuzziness and Knowledge-based Systems,
2002.

[12] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam,
“l-diversity: Privacy beyond k-anonymity,” ACM Transactions on Knowl-
edge Discovery from Data (TKDD), vol. 1, no. 1, pp. 3–es, 2007.

[13] N. Li, T. Li, and S. Venkatasubramanian, “t-closeness: Privacy beyond k-
anonymity and l-diversity,” in 2007 IEEE 23rd International Conference
on Data Engineering, pp. 106–115, IEEE, 2007.

[14] A. Meyerson and R. Williams, “On the complexity of optimal k-
anonymity,” in Proceedings of the Twenty-Third ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS
’04, (New York, NY, USA), p. 223–228, Association for Computing
Machinery, 2004.

[15] J. Li, B. C. Ooi, and W. Wang, “Anonymizing streaming data for
privacy protection,” in 2008 IEEE 24th International Conference on
Data Engineering, pp. 1367–1369, 2008.

[16] J. Cao, B. Carminati, E. Ferrari, and K. Tan, “Castle: Continuously
anonymizing data streams,” IEEE Transactions on Dependable and
Secure Computing, vol. 8, no. 3, pp. 337–352, 2011.

[17] Intel, “Data plane development kit.” ”https://www.dpdk.org/”.
[18] M. Trevisan, A. Finamore, M. Mellia, M. Munafo, and D. Rossi,

“Traffic Analysis with Off-the-Shelf Hardware: Challenges and Lessons
Learned,” IEEE Commun. Mag., vol. 55, no. 3, pp. 163–169, 2017.

[19] S. Woo and K. Park, “Scalable TCP session monitoring with Symmetric
Receive-Side Scaling,” KAIST, Daejeon, Korea, Tech. Rep, 2012. Ac-
cessed on 12/13/2016.

[20] J. Xu, J. Fan, M. H. Ammar, and S. B. Moon, “On the Design
and Performance of Prefix-Preserving IP Traffic Trace Anonymization,”
ACM SIGCOMM Internet Measurement Workshop, pp. 263–266, 2001.

[21] A. Finamore, M. Mellia, M. Meo, M. M. Munafo, , and D. Rossi,
“Experiences of internet traffic monitoring with tstat,” IEEE Network,
vol. 25, no. 3, pp. 8–14, 2011.

[22] M. Trevisan, D. Giordano, I. Drago, M. M. Munafò, and M. Mellia,
“Five years at the edge: Watching internet from the isp network,” vol. 28,
pp. 561–574, IEEE, 2020.

[23] “Benchmarking Methodology for Network Interconnect Devices.” RFC
2544, Mar. 1999.

[24] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-Buedo,
and A. W. Moore, “Understanding pcie performance for end host
networking,” in Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’18, (New York,
NY, USA), p. 327–341, Association for Computing Machinery, 2018.

[25] T. Li and N. Li, “On the tradeoff between privacy and utility in data
publishing,” in Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 517–526,
2009.

[26] A. Meyerson and R. Williams, “On the complexity of optimal k-
anonymity,” in Proceedings of the twenty-third ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pp. 223–228,
2004.

[27] J. Zhang, J. Yang, J. Zhang, and Y. Yuan, “Kids:K-anonymization data
stream base on sliding window,” IEEE International Conference on
Future Computer and Communication, 2010.

[28] H. Kim and A. Gupta, “Ontas: Flexible and scalable online network
traffic anonymization system,” in Proceedings of the 2019 Workshop on
Network Meets AI & ML, NetAI’19, (New York, NY, USA), p. 15–21,
Association for Computing Machinery, 2019.

[29] G. Minshall, “Tcpdpriv,” http://fly.isti.cnr.it/ software/ tcpdpriv/ .
[30] E. Blanton, “Tcpurify,” https:// isc.sans.edu/ forums/diary/Truncating+

Payloads+and+Anonymizing+PCAP+files/23990/ , 2008.
[31] S. Farrell and H. Tschofenig, “Pervasive Monitoring Is an Attack.” RFC

7258, May 2014.
[32] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia,

M. Munafò, K. Papagiannaki, and P. Steenkiste, “The cost of the” s”
in https,” in Proceedings of the 10th ACM International on Conference
on emerging Networking Experiments and Technologies, pp. 133–140,
2014.

[33] C.-l. Chan, R. Fontugne, K. Cho, and S. Goto, “Monitoring tls adoption
using backbone and edge traffic,” in IEEE INFOCOM 2018-IEEE
Conference on Computer Communications Workshops (INFOCOM WK-
SHPS), pp. 208–213, IEEE, 2018.

[34] P. Velan, M. Čermák, P. Čeleda, and M. Drašar, “A survey of methods
for encrypted traffic classification and analysis,” International Journal
of Network Management, vol. 25, no. 5, pp. 355–374, 2015.

[35] P. Hoffman and P. McManus, “DNS Queries over HTTPS (DoH),” Tech.
Rep. 8484, RFC Editor, 2018.

[36] E. Rescorla, K. Oku, N. Sullivan, and C. A. Wood, “Encrypted Server
Name Indication for TLS 1.3,” Tech. Rep. draft-ietf-tls-esni-04, RFC
Editor, 2019.

[37] R. Pang and V. Paxson, “A High-Level Programming Environment for
Packet Trace Anonymization and Transformation,” ACM SIGCOMM,
pp. 339–351, 2003.

[38] M. Peuhkuri, “A Method to Compress and Anonymize Packet Traces,”
ACM SIGCOMM Internet Measurement Workshop (IMW), 2001.

[39] M. Allman, E. Blanton, and W. Eddy, “A Scalable System for Sharing
Internet Measurements,” In Proceedings of Passive —& Active Measure-
ment (PAM.

[40] R. Pang and V. Paxson, “A High-Level Programming Environment for
Packet Trace Anonymization and Transformation,” ACM SIGCOMM
Conference, 2003.

[41] D. Koukis, S. Antonatos, D. Antoniades, E. P. Markatos, and P. Trim-
intzios, “A Generic Anonymization Framework for Network Traffic,”
IEEE International Conference, vol. 5, 2006.

"https://www.dpdk.org/"
http://fly.isti.cnr.it/software/tcpdpriv/
https://isc.sans.edu/forums/diary/Truncating+Payloads+and+Anonymizing+PCAP+files/23990/
https://isc.sans.edu/forums/diary/Truncating+Payloads+and+Anonymizing+PCAP+files/23990/

14

BIOGRAPHIES

Thomas Favale comes from Brindisi and was born
on April 1st, 1994. He got his Master Degree in
Computer Engineering, specializing in the network
branch, in 2019 at Politecnico di Torino. From May
2019 he started the Ph.D. at Politecnico di Torino
under the supervision of Professor Marco Mellia,
joining the Interdepartmental Centre for Smart Data.
His research interests focus on traffic anonymization.

Martino Trevisan received his PhD in 2019 from
Politecnico di Torino, Italy. He is currently an
assistant professor (RTD-A) at the Department of
Electronics and Telecommunications in the same
university. He has been collaborating in both Indus-
try and European projects and spent six months in
Telecom ParisTech, France working on High-Speed
Traffic Monitoring during his M.Sc. He visited twice
Cisco labs in San Jose in summer 2016 and 2017, as
well as AT&T labs during fall 2018. He was Visiting
Professor at the Federal University of Minas Gerais

in Brazil in 2019.

Idilio Drago is an Assistant Professor (RTD-b)
at the University of Turin (UNITO), Italy, in the
Computer Science Department. His research inter-
ests include cybersecurity, Internet measurements,
artificial intelligence, machine learning and big data
analytics. He particularly interested on how AI and
data science approaches can help to extract knowl-
edge from network monitoring traffic and help to au-
tomate network security. He was Visiting Professor
at the Federal University of Minas Gerais in Brazil
in 2019. He holds a Ph.D. in Computer Science from

the University of Twente, the Netherlands, and a master’s degree from the
Federal University of Espirito Santo, Brazil. He was awarded an Applied
Networking Research Prize in 2013 by the IETF/IRTF for my work on cloud
storage.

Marco Mellia (F’21) is full Professor at the De-
partment of Electronics and Telecommunications of
Politecnico di Torino, Italy. His research interests are
in the in the area of traffic monitoring and analysis,
in cyber monitoring, and Big Data analytics. Marco
Mellia has co-authored over 250 papers published in
international journals and presented in leading inter-
national conferences. He won the IRTF ANR Prize
at IETF-88, and best paper award at IEEE P2P’12,
ACM CoNEXT’13, IEEE ICDCS’15. He is part of
the editorial board of ACM/IEEE Transactions on

Networking, IEEE Transactions on Network and Service Management, and
ACM Computer Communication Review.

