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fingerprinters. Our methodology achieves 94.2% accu-

racy, with a modest 5.6% false positive rate, and requires

about 190ms per-script decision time on off-the-shelf

hardware. We compare this against approaches based

on dynamic code analysis [7, 11]. Interestingly, we ob-

serve that static code analysis spots several latent finger-

printing patterns, i.e., pieces of JavaScript code which

activate under given circumstances only (e.g., on spe-

cific browser versions and settings). We conclude that

static and dynamic code analysis are complementary,

and should be combined to maximize detection.

• We use our methodology to detect scripts using finger-

printing on a unique dataset of JavaScript files down-

loaded by real users. 1.1% of scripts are classified as fin-

gerprinters and delivered by 842 unique domains, some

of which were previously unknown.

• We deeply characterize fingerprinters, and the tech-

niques they adopt. Surprisingly, most recent and accu-

rate fingerprinting techniques such as Canvas and Audio

are the least used (21% and 4% of fingerprinting scripts,

respectively), whereas more traditional techniques (e.g.,

enumeration of plug-ins and MIME types) are the most

popular (85% of fingerprinting scripts).

• We match the list of fingerprinters we obtain against

a list of tracking domains provided by popular tracker

blockers. We identify 695 unknown fingerprinters that

combine modern fingerprinting techniques with tradi-

tional ones more often than already known systems.

This stresses the need for automatic detection systems

such as the one proposed in this paper.

• Deepening on the class of unknown fingerprinters, we

observe it includes trackers which deliver their scripts

directly from the domain of websites hosting them, thus

possibly circumventing tracker-blockers. Other services

use fingerprinting for non-tracking purposes, such as

fraud detection and bot recognition. These observations

testify there is a great variety in fingerprinters’ ecosys-

tem, and further ingenuity is required to identify actual

privacy-offending fingerprinting.

We strongly believe the methodology and the results

presented in this paper are interesting for researchers

working on online privacy, as well as for developers

building privacy-preserving technologies such as anti-

tracking blocklists, privacy-aware browsers and tracker

blockers. For this reason we share our ground-truth

dataset with researchers to stimulate further studies.

The rest of the paper is organized as follows: Sec-

tion 2 presents a brief overview of known fingerprinting

techniques, as well as works related to this study. In Sec-

tion 3 we present the ground-truths we use for training

and testing our classifiers as well as the dataset we ob-

tain from real users. In Section 4 we detail our method-

ology, its parameter tuning and performance evalua-

tion, and compare static and dynamic code analysis ap-

proaches. Then, in Section 7 we present a characteriza-

tion of fingerprinters based on data obtained from real

users. In Section 8 we discuss the limitations of our ap-

proach. Finally, Section 9 concludes the paper.

2 Background and related work

In this section we describe fingerprinting practice,

techniques and countermeasures (Section 2.1 and Sec-

tion 2.2), and the body of work related to this study

(Section 2.3), which we divide in three categories. The

first studies its usage and pervasiveness. The second fo-

cuses on techniques to identify web fingerprinting. The

third proposes countermeasures to mitigate it.

2.1 Fingerprinting techniques

Fingerprinting is the process that leverages the browser

to collect information about the device running it.

Such collection might have multiple purposes. The most

privacy-offending is the identification and tracking of

browser instances or devices in a stateless manner, e.g.,

without using HTTP cookies. In general, a user encoun-

ters fingerprinting scripts during navigation, and, once

executed by the browser, these scripts collect and report

sets of attributes and properties whose combination is

likely unique for the user’s device configuration. Consid-

ering the specific case of tracking services, fingerprinting

makes their activity more difficult to detect and block,

as they do not install identifiers on the users’ device.

In the last decade fingerprinting techniques have

evolved dramatically. This evolution has been driven

prominently by trackers’ need of identifying users even

when, e.g., cookies are turned off. We briefly present the

state of the art of techniques in the following.

Browser Fingerprinting: It builds on the collection of

attributes simply obtainable from users’ browser, such

as, for instance, installed fonts, plug-ins, MIME types,

screen properties, user agent, etc. These can be easily re-

trieved through navigator and screen objects, HTTP

headers, Java and Flash browser’s plug-ins. When com-

bined, this information may build unique identifiers to

track users [10, 19, 24], or discriminate visits generated

by automatic crawlers [7]. However, this technique has

some disadvantages. First, it is prone to instability as
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fingerprints can change because of browser upgrades or

modifications of its configuration (e.g., new font instal-

lation). Second, it cannot distinguish browser instances

identically configured on different devices [10].

Canvas and Audio Fingerprinting: These two tech-

niques are more recent than those described above and

we group them together as they both build on the same

idea of leveraging APIs which, when fed with specific

input, return values which vary depending on users’ sys-

tem configuration and hardware. For instance, Canvas

fingerprinting builds on rendering text and graphical

components on screen areas using the HTML5 Can-

vas element and on the acquisition of pixel data re-

turned by the corresponding API. More in detail, the

fingerprinting script obtains a 2D-graphics context and

draws text and figures in the canvas. Then, it executes

the toDataURL() JavaScript API to obtain a Base64-

encoded version of the PNG image rendered from the

canvas, which is ultimately used to generate a hash. A

similar process can be executed with 3D objects. This

simple fingerprinting technique has been demonstrated

for the first time by Mowery and Shacham in [21]. Many

factors influence the generation of the hash. These are

operating system, browser version, graphics card and

anti-aliasing management. As a consequence, the hash

acts as a unique identifier. Canvas fingerprinting is ap-

pealing for trackers as it provides high entropy, it is con-

sistent over time, transparent to the user and fully im-

plementable in JavaScript, thus easy to execute without

any special requirement. Nevertheless, hash can change

across browsers, and cannot be used to discriminate

users sharing the same graphical stack. Audio finger-

printing builds on a similar mechanism which exploits

the creation and recording of an audio waveform [11].

Other fingerprinting approaches: There exist other,

rarer to encounter or less efficient, fingerprinting tech-

niques. JavaScript Engine fingerprinting builds on

JavaScript conformance tests such as ECMA’s Test262

test suite [3]. As Mulazzani et al. show in [22], this

method keeps track of failed conformance tests in user’s

browser to pinpoint its version. Cross-browser finger-

printing builds on APIs of hardware made accessible via

JavaScript. For instance, specifically for mobile devices,

Bojinov et al. have shown in [9] how one can measure

accelerometer calibration imprecisions to build a signa-

ture and uniquely identify the device. This fingerprint-

ing approach detects the device being used, and works

independently from the browser in use. WebRTC offers

features for real-time communication which, in order to

find the best route between two communicating end-

points, allows to collect information on IP addresses of

interest, including private ones used by local network in-

terfaces. Such information can again be used to further

enrich the robustness of a fingerprint [27]. Battery fin-

gerprinting consists in taking track of the capacity and

status of devices’ battery using HTML5 Battery Status

APIs. This is another piece of information which one

could use to increase entropy and, thus, uniqueness of

fingerprints [25]. It is worth mentioning that Firefox, as

well as many other browsers, dropped the support for

such set of APIs in 2015, thus preventing web finger-

printers to collect data on users’ battery status [1].

2.2 Countermeasures to fingerprinting

The privacy concerns raised by fingerprinting techniques

made users’ demand for privacy-preserving solutions

grow considerably in the last decade. Countermeasures

for private users come often implemented as browser

extensions, which can be divided in two main families:

active blockers, browser extensions which either prevent

the browser to execute fingerprinting code (e.g., No-

Script1 and Privacy Badger2), or block or alter spe-

cific attributes (e.g., Canvas Blocker3 and Ultimate User

Agent4). The second family is URL blockers. These are

extensions, apps or proxies (considering the corporate

scenario), which use pre-built blocklists of URLs to pre-

vent the browser to contact fingerprinters, and thus,

download and execute their code (e.g., Adblock Plus5

and Disconnect3). Blocklists are usually built manually,

and contain domains or URLs which have been found

linked to some sort of tracking activity.

2.3 Related work

Fingerprinting pervasiveness: Many studies have

quantified the diffusion of web tracking in the last years.

Krishnamurthy and Willis were the first to longitudi-

nally describe tracking services and how they massively

increased their presence in the web between 2005 and

2008 [17]. Following studies have shown a worryingly

consistent growth of web trackers’ pervasiveness [19, 20].

1 No-Script, https://github.com/hackademix/noscript.

2 Privacy Badger, https://www.eff.org/privacybadger/faq.

3 Canvas Blocker, https://github.com/kkapsner/

CanvasBlocker.

4 Ultimate User Agent, http://iblogbox.com/chrome/

useragent/alert.php.

5 Adblock Plus https://adblockplus.org/.

https://github.com/hackademix/noscript
https://www.eff.org/privacybadger/faq
https://github.com/kkapsner/CanvasBlocker
https://github.com/kkapsner/CanvasBlocker
http://iblogbox.com/chrome/useragent/alert.php
http://iblogbox.com/chrome/useragent/alert.php
https://adblockplus.org/
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Considering specifically web fingerprinting, Eckers-

ley was the first to provide a comprehensive study of

available techniques with EFF’s Panopticlick project.

In [10] he showed how fingerprinting improves trace-

ability, severely harming users’ privacy, especially when

Java and Flash plug-ins are installed in the browser.

Nikiforakis et al. examined the JavaScript code of

popular fingerprinters [24]. They show some techniques

are so pervasive they can track the IP address of devices

even in presence of HTTP proxies, or install browser

plug-ins without the user’s authorization. Englehardt

and Narayanan presented similar observations in [11].

Trackers keep developing novel techniqes exploiting

browsers’ data leakage. For instance, Olejinik et al. were

the first to denounce in [25] how browsers’ Battery Sta-

tus APIs can be used for fingerprinting purposes.

Identification based on dynamic code analy-

sis: A number of studies have analyzed fingerprint-

ing and developed identification techniques based on

dynamic analysis of scripts contained in webpages.

Acar et al. built a set of heuristics to understand how

browser properties such as navigator, window.screen

and HTMLElement are systematically used by trackers to

perform browser and device fingerprinting [7]. In 2014,

G. Acar et al. presented in [6] the results of analyz-

ing the presence of ever-cookies, cookie-syncing practice

and Canvas fingerprinting on the 100,000 most popu-

lar websites according to Alexa ranking. Interestingly,

Canvas fingerprinting was present on 5.5% of consid-

ered websites. In 2016, Englehardt and Narayanan con-

ducted a similar experiment on a wider scale, i.e., con-

sidering Alexa’s top 1M websites [11]. These new re-

sults demonstrated that only 1.6% of websites contained

some Canvas fingerprinting code, leading to conclude

that previous studies induced web trackers to stop us-

ing this pervasive technique. Englehardt and Narayanan

surveyed methodologies based on Canvas font, Audio-

Context, BatteryAPI and WebRTC, which all resulted

to be less diffused than Canvas fingerprinting.

Section 5 shows that studies based on dynamic code

analysis alone tend to underestimate the actual usage of

fingerprinting in the web, and in Section 6 we compare

our approach with those presented in [7] and [11].

Identification based on static code analysis: The

number of studies addressing the problem of identify-

ing trackers and fingerprinters using static analysis of

JavaScript code is rather limited. Recently, Ikram et

al. presented in [16] a methodology which combines

code mining and machine learning to identify pieces of

JavaScript code performing tracking activity – not fin-

gerprinting, though. Ikram et al. encountered our same

difficulties during the design of their methodology, such

as, e.g., the need of manually labeling tracking scripts

to build a ground-truth dataset for the classifiers, and

the inability to correctly analyze obfuscated scripts.

Van Zalingen and Haanen proposed in [15] an ap-

proach that has inspired us in the design of our method-

ology. Similarly to them, we leverage Abstract Syntax

Tree to perform code analysis, and SVM to classify

fingerprinting scripts. However, despite these common

points, our methodology differs substantially from mul-

tiple perspectives. Amongst the most important ones,

our machine-learning approach addresses considerably

more fingerprining techniques, and has been trained and

tested using a much bigger ground-truth dataset con-

taining thousands of JavaScript scripts. In fact, Van Za-

lingen and Haanen’s dataset contains only few tens of

scripts. Finally, we achieve much better results.

Mitigation of fingerprinting: Other studies propose

systems to protect devices from fingerprinting. In partic-

ular, by limiting or modifying its execution at run time,

when the browser is asked to call specific fingerprinting

APIs [8, 13, 14, 23]. In general, these systems alter val-

ues provided by fingerprinting APIs by returning either

partial or empty sets of properties, randomizing values

for attributes such as the screen size or DOM elements’

offsets, and introducing noise to the images produced by

HTMLCanvasElement. However, these approaches could

cause the browser to be even more unique and, as such,

easier to recognize in a multitude [24].

Browsers themselves have introduced some mecha-

nisms to limit the collection of easily identifiable user

data. Laperdrix et al. in [18] repeated the experi-

ments Eckersley presented in [10]. By comparing results,

Laperdrix et al. observed a noticeable reduction of iden-

tifying capability of lists of fonts and plug-ins.

This paper advances the state of the art on web

fingerprinting by presenting a methodology that com-

plements existing techniques for fingerprinter detection,

so it can be used to build curated privacy-preserving

blocklists, or extended to identify on the fly specific

JavaScript pieces of code to block.

3 Datasets

In this section we describe the datasets we collected and

use throughout this paper.
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3.1 Dataset for fingerprinter analysis

Our study builds on a unique dataset containing HTTP

and HTTPS logs provided by volunteering users who

participated in a web measurement project run by Po-

litecnico di Torino between April and August 2017.

Users joining the project provided their explicit con-

sent to install an HTTP/S traffic monitoring tool, Er-

mes Proxy, on their PCs (running Windows, macOS

or Linux) for a period of at least one month. Ermes

Proxy acts as a software proxy installed on the device

and performs HTTP and SSL inspection. It processes all

HTTP/S transactions generated by browsers on the de-

vice, and dumps to file the information extracted from

headers (i.e., removing all payloads): For each HTTP/S

transaction, Ermes Proxy registers the timestamp, the

HTTP method, the requested URL, page referer, user

agent, and server response status code in a local log,

which is periodically uploaded to a remote server.

In total, 982 volunteers installed Ermes Proxy on

their PCs for more than 1 month. We collected about

250GB of traffic logs obtained from more than 52M

HTTP/S transactions. In the remainder of the paper

we will refer to this dataset as HTTPDataset.

Compliance with data protection law: We per-

formed our data collection in Europe, where since May

2018 any kind of data collection process must be com-

pliant with the European General Data Protection Reg-

ulation (GDPR in short) [5]. Despite EU’s GDPR was

not yet active at the moment of the collection, we used

its draft as a policy reference to conduct our measure-

ment collection: Users who joined the data collection

have been properly informed about the purposes of the

research project; They received a description of the data

collection methodology, including information about the

risks they could incur into, as well as a description of

the mechanisms we adopted to prevent data leaks and

guarantee privacy and security. The whole collection

was based on the opt-in principle, and users voluntar-

ily accepted to join the experiment. Finally, our data

collection has been funded by Politecnico di Torino and

approved by its Privacy and Security Board.

Privacy preservation and security: We designed the

measurement collection process to be fully secure and

respect users’ privacy. HTTPS connections are the most

critical from privacy and security perspectives as they

often carry information users would like to keep private.

For this, Ermes Proxy pseudo-anonymizes logs to miti-

gate the risk of leaking personal information. In partic-

ular, Ermes Proxy does not register any user identifier,

nor it stores Personal Identifiable Information (PIIs)

such as IP addresses. Plus, to avoid collecting PIIs con-

tained in URLs, it strips query parameters contained in

URLs (by removing text after “?”). To prevent attack-

ers to gain access to our data collection, we implement

strict security policies. We limit the access to the server

hosting data to few authorized people who can access it

through selected machines.

We encouraged users to join the project using re-

wards. They could obtain a gift card to spend on a

popular online retailer at the end of the data collection

period. To avoid the dataset to be biased or polarized to-

wards specific communities, we advertised our initiative

at different events (e.g., fairs, classes, etc.), platforms

(Facebook groups), and specific online communities. In

the end, the set of participants consists mainly in males

(85%) between 18 and 31 years old (91%). Participants

are from different parts of Italy, with 19% from the

metropolitan area of Politecnico di Torino. The visited

websites fairly represent the typical web activity of the

average user. In fact, 68.1%, 42.8% and 17.3% of Alexa’s

top 1,000, 10,000 and 100,000 websites are present in the

set of visited websites, respectively.6 Conversely, 68.8%

of visited websites is out of Alexa’s top 1M, being these

mostly local websites.

We use HTTPDataset to collect JavaScript files that

we use to design and test our methodology. First, we

extract all URLs containing JavaScript scripts by per-

forming a substring search for “.js” files (about 716, 000

records). Next, we download each JavaScript file using

wget, parse it and generate a hash code from its con-

tent. We use the hash to identify duplicate files. The fi-

nal dataset consists of 419, 824 JavaScript files, of which

236, 217 are unique, from a total of 29, 851 different ser-

vices, that we identify by the domain name in the URL.

We refer to this dataset as JSWild.

Our dataset provides a different angle compared

to data collections like crawling the top websites in

rankings (e.g., Alexa), or passively sniffing HTTP traf-

fic. First, it considers regular PCs, each with differ-

ent browsers, browsing histories, operating systems, and

hardware configurations. Second, it factors actual users’

habits while they browse websites in which they are in-

terested. Hence, we can analyze scripts from internal

website pages, possibly protected by login, yet publicly

accessible, as well as scripts downloaded only after ex-

plicit user actions (e.g, click on cookie banner).

6 Alexa Top Websites, https://www.alexa.com/topsites.

https://www.alexa.com/topsites
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3.2 Ground truth for static code analysis

To design and test a supervised machine-learning

methodology, we need labeled data. In our case, labels

refer to the script being fingerprinters or not. To this

end, we proceed in two phases.

First phase: building a seeding dataset. First,

we gather JavaScript files connected to websites that

have low probability of embedding ads and trackers,

and, hence, fingerprinters. Such websites are, for in-

stance, academic and government sites. Then, we in-

tegrate this collection with previously known finger-

printing scripts contained in Princeton’s WebCensus

database [2] which Englehardt and Narayanan built for

their experiments [11]. Next, we manually analyze each

script to verify whether it contains fingerprinting code

or not. For this we proceed as follows:

1) We check if the script is in clear text and easy to

read, or at least, minification does not compromise the

readability of the code.

2) We check if the script domain corresponds to some

tracking service. For this, we use a list of tracking do-

mains, named TrackerList, built by merging different

lists (Disconnect7, EasyPrivacy8 and EasyList9).

3) Similarly to the approach used by Englehardt and

Narayanan, we check the presence of specific fingerprint-

ing APIs (see Table 3 for the full list).

4) We analyze the code to understand its procedure, the

results it would obtain if executed and if these would be

sufficient to perform fingerprinting based on the knowl-

edge we have on available techniques, and we extrapo-

late the context to understand the aim of the code.10 For

instance, for the case of font enumeration, we check the

presence of any kind of code implementing the following

steps: a) apply browser’s default text on a pre-defined

text and calculate its size, b) iterate over a list of pre-

defined fonts, and at each cycle, apply a font from the

list on the text, c) compare the size of rendered text

with the size of text rendered using the browser’s de-

fault font, d) register the considered font id in a list in

case of mismatch (that means, the font is installed as

the browser has not used default font as fallback), e)

the list is then saved in a structure which is sent to a

server or saved in a cookie. At the end of this process

7 Disconnect, https://disconnect.me.

8 EasyPrivacy, https://easylist.to/easylist/easyprivacy.txt.

9 EasyList, https://easylist.to/easylist/easylist.txt.

10 We remark that we label as fingerprinters all scripts which

do contain actual fingerprinting code, and not for some mere

feature probing.

Non-fingerprinting Fingerprinting Total

#scripts 1,169 733 1,902

#domains 278 493 75212

Table 1. Characterization of ground-truth dataset used to train

and test our methodology based on static code analysis JSStatic-

GroundTruth.

we obtain 309 manually verified scripts where 170 are

labeled as fingerprinters.

Second phase: extending the manually labeled

dataset. We build on these 309 scripts to build a pre-

liminary version of our classifier. We then use it to

quickly classify a subset of 100, 000 randomly picked

scripts from the HTTPDataset. At the end of this pro-

cess we again manually check them as described above.

In case of ambiguous decision, we skip the script. This

results in 563 scripts manually verified as fingerprinters

and 1, 030 as non-fingerprinters.

In the end, we obtain in total more than 1, 900 man-

ually validated scripts, 39% of which are fingerprinters.

We refer to this dataset as JSStaticGroundTruth, as de-

tailed in Table 1. For the sake of transparency, we share

with the community this ground-truth to let other re-

searchers verify its content.11

3.3 Ground truth for dynamic code

analysis

To compare our approach based on static analysis

against dynamic code analysis we need to build a sep-

arate dataset. In fact, dynamic code analysis builds on

the availability of data collected during the execution

of a piece of code. For our specific purpose, we need to

log fingerprinting APIs when executed by the browser.

For this, we modify OpenWPM13, the web crawler in-

troduced in [11] to override JavaScript functions and

APIs which are typically used for fingerprinting pur-

poses. Any time a JavaScript script requires the browser

to execute one of the instrumented APIs, we log i) the

API name, ii) the URL from which the script has been

11 Ground-truths available at https://www.pimcity-

h2020.eu/publication/unveiling-web-fingerprinting-in-the-

wild-via-code-mining-and-machine-learning/ .

12 Some domains host both non-fingerprinting and fingerprint-

ing scripts. As such, the total number of domains is different

from the sum of the number of domains in the two classes.

13 OpenWPM, https://github.com/mozilla/OpenWPM.

https://disconnect.me
https://easylist.to/easylist/easyprivacy.txt
https://easylist.to/easylist/easylist.txt
https://www.pimcity-h2020.eu/publication/unveiling-web-fingerprinting-in-the-wild-via-code-mining-and-machine-learning/
https://www.pimcity-h2020.eu/publication/unveiling-web-fingerprinting-in-the-wild-via-code-mining-and-machine-learning/
https://www.pimcity-h2020.eu/publication/unveiling-web-fingerprinting-in-the-wild-via-code-mining-and-machine-learning/
https://github.com/mozilla/OpenWPM
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Non-fingerprinting Fingerprinting Total

#scripts 206 222 428

#domains 101 161 262

Table 2. Characterization of the ground-truth dataset used to

train and test our classifier based on dynamic analysis JSDynam-

icGroundTruth.

downloaded, and iii) the execution timestamp, and we

save the JavaScript file.

We instruct our OpenWPM crawler to visit the top

1M websites of the Alexa rank. For each website, we

visit the landing page and five internal links at ran-

dom. The measurement campaign took 94 days to nav-

igate all websites using 8 browser instances running in

parallel on 2 AWS machines equipped with a 2.5GHz

CPU core and 8GB of RAM. In total, we collect 9.8M

scripts and 111GB logs of calls to JavaScript APIs. Out

of this dataset, we randomly extract a sample consisting

of about 156,000 scripts connected to 17,000 websites. In

the rest of the paper, we refer to this dataset as JSAlexa.

At last, we create a second labeled dataset that

we use to train and test a classifier based on dynamic

code analysis data, capable of detecting the same set of

fingerprinting techniques identified by our static anal-

ysis. This second ground truth, namely JSDynamic-

GroundTruth, consists of 428 scripts downloaded by our

crawler, that we manually verified using a procedure

similar to that used to build JSStaticGroundTruth. We

summarize JSDynamicGroundTruth in Table 2.

4 Classification using static code

analysis

In this section we present the methodology we design

to automatically identify JavaScript files performing

fingerprinting based on static analysis of their code.

It builds on the assumption that we can determine

whether a script performs fingerprinting by checking the

presence of code patterns typically employed to perform

fingerprinting. Our methodology consists of four steps

that we describe in the following.

4.1 Code de-obfuscation and

beautification

In order to minimize their footprint, JavaScript files

are usually delivered to the browser in a minified form,

which replaces variable and function names with short

random strings and wipes out unnecessary spacing. Be-

cause of this process, minified scripts are hardly human-

readable, and, thus, difficult to analyze. Sometimes code

is obfuscated too. Code obfuscation enables the protec-

tion of intellectual and industrial property, but it makes

reverse engineering impracticable, with severe conse-

quences for privacy and security [29]. In this phase we

first de-minify JavaScript files using the same approach

used in [15], which combines JSBeautifier14 with a set

of tools developed specifically for this purpose. Then,

we attempt to perform de-obfuscation, which allows us

to maximize the amount of scripts to process. More in

detail, de-obfuscation is effective against a number of

obfuscating tools and techniques: JavaScript Obfusca-

tor15, Dean Edward’s packer16 and url-encoding. How-

ever, our de-obfuscation approach cannot succeed when

strong obfuscation techniques are employed. We discuss

the impact of this limitation on our analysis in Section 8.

4.2 Syntactic structure analysis and

string-matching search

We analyze the code’s syntactic structure by generating

an Abstract Syntax Tree (AST). Given a script, its AST

provides a tree representation of the syntactic structure

of the code. Each node of the tree describes a code con-

struct in the script, and integrates data about the type

of construct, position and construct-specific properties.

In other words, we obtain information describing what

would happen when the browser executes the analyzed

code. To accomplish this task we build on Esprima17 to

generate the AST, and Estraverse18 to analyze it.

4.3 Fingerprinting patterns

The features we use for classification build on APIs used

by scripts performing fingerprinting. In Table 3 we re-

14 JSBeautify, https://github.com/beautify-web/js-beautify.

15 JavaScript Obfuscator, https://javascriptobfuscator.com.

16 Dean Edward’s packer, http://dean.edwards.name/packer.

17 Esprima, http://esprima.org/.

18 Estraverse, https://github.com/estools/estraverse.

https://github.com/beautify-web/js-beautify
https://javascriptobfuscator.com
http://dean.edwards.name/packer
http://esprima.org/
https://github.com/estools/estraverse
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port the list of APIs we consider in this study, grouped

by category. Since the presence in the code of one of such

APIs is not sufficient to determine the presence of finger-

printing (APIs can be used for different purposes), we

must define fingerprinting patterns around them. A pat-

tern is a portion of JavaScript instructions containing

one or more calls to APIs in Table 3, and satisfying spe-

cific conditions. For instance, non-fingerprinting scripts

often use Canvas APIs, hence we define specific crite-

ria to determine when Canvas APIs, e.g., toDataURL(),

are likely to be used for fingerprinting. For instance,

Canvas fingerprinting is based on the presence of micro-

differences between the image provided as input and the

rendered one. Thus, we create a pattern for which we

check that the image format used by toDataURL() to

output the figure is lossless, since a lossy one would be

deprived of the needed details to perform fingerprint-

ing. We define patterns for APIs detected with both

AST and string-matching approaches. For the AST, we

create in total 79 patterns ranging from simple enumer-

ations of navigator properties to calls to specific APIs

(toDataURL(), createOscillator(), etc.).

Figure 1 reports an example of fingerprinting code,

together with a graphical representation of part of the

corresponding AST. For the sake of brevity, we omit to

report the full AST and hide irrelevant sub-trees (drawn

with dashed contour). The figure shows how we employ

the fingerprinting pattern we developed to detect plug-

in enumeration leveraging the AST. Our pattern con-

sists of the blocks highlighted in red in the figure. In

particular, we record the variable declaration in line 1

where navigator.plugin is called, the for statement

and the subsequent calls to navigator.plugin’s prop-

erties version and name. The final fingerprinting pat-

tern also verifies that the properties are not compared

to static strings or used under a conditional expression.

If all these conditions are met, we finally record the pat-

tern as a possible enumeration attempt, and create the

relative feature to be used by the classifier.

Unfortunately, AST generation (often) fails on

obfuscated or malformed code. In fact, it fails on

7.33% of the processed scripts contained in JSStatic-

GroundTruth. In this case it either produces an incom-

plete result (3.67%), or it does not produce a result at

all (3.66%). To mitigate this issue, we also rely on sim-

ple string-matching approach to register the presence

of fingerprinting patterns in obfuscated scripts. Indeed,

despite obfuscation, it is common that some calls to fin-

gerprinting APIs may be still present in clear text, and,

thus, easy to detect. For string matching, we build 63

fingerprinting patterns, i.e., all those designed for AST,

except enumerations (fonts, plug-ins and MIME types)

as string matching does not allow us to verify conditions

for enumeration-based fingerprinting techniques.

4.4 Classification with machine learning

Given the multidimensional space and variety in AST

data, machine learning is both crucial and a natural

choice to accelerate the creation of reliable classifiers.

Moreover, machine learning algorithms offer explana-

tions on why a decision has been taken, e.g., show-

ing the most important features that drive a decision.

Hence, we rely on supervised machine learning to train

classifiers able to distinguish fingerprinting from non-

fingerprinting JavaScript code. To do so, we first define

the features to be used as input, then we select a proper

supervised classifier, train and optimize parameters to

ultimately maximize classification performance. In the

following, we describe each step.

Feature engineering: For each fingerprinting pattern

identified in the AST or by using string-matching, we

create a feature based on its number of occurrences. In

details, given a JavaScript file, we create a map of key-

value pairs where fingerprinting patterns are the keys,

and the corresponding number of occurrences in the file

are the values. We then use such features to train and

test two supervised machine-learning classifiers.

Machine learning model selection: Given the lim-

ited size of the labeled dataset, we select Support Vec-

tor Machines (SVM) and Random Forest (RF) as mod-

els to train. We choose these because they are consid-

ered among the best performing models with relatively

small datasets, and they build on substantially different

approaches to classification. Both consider non-linear

models. SVM has been chosen because it captures com-

plex relationships between samples, without requiring

us to perform cumbersome data transformations. RF

has been selected because of its flexibility and its ca-

pability to automatically perform feature selection. RF

models are also easy to understand and interpret, and

this considerably helps us to debug and improve the

methodology. We excluded other, more complex, models

such as those based on Neural Networks or Associative

Rules. In fact, these models perform very well when fed

with large amounts of data, which is not our case. For

the implementation, we use Scikit-Learn [26], a popular

Python library for machine learning.

Classification performance indices: To evaluate the

performance of the trained models, we rely on standard

classification indices such as precision and recall. Given
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Categories Browser Parameters Plug-ins & MIME types Screen WebGL Parameters Canvas

Set of APIs

navigator.appCodeName

navigator.product

navigator.productSub

navigator.vendor

navigator.vendorSub

navigator.onLine

navigator.appVersion

navigator.language

navigator.cookieEnabled

navigator.javaEnabled

navigator.doNotTrack

navigator.plugins

navigator.plugins.length

navigator.plugins[i].name

navigator.plugins[i].filename

navigator.plugins[i].description

navigator.mimeTypes

navigator.mimeTypes.length

navigator.mimeTypes[i].enabledPlugin

navigator.mimeTypes[i].description

navigator.mimeTypes[i].suffixes

navigator.mimeTypes[i].type

window.screen.height

window.screen.width

window.screen.colorDepth

window.screen.pixelDepth

window.screen.availLeft

window.screen.availTop

window.screen.availHeight

window.screen.availWidth

window.screen.deviceYDPI

window.screen.deviceXDPI

window.screen.systemXDPI

window.screen.systemYDPI

window.screen.logicalXDPI

window.screen.logicalYDPI

window.screen.updateInterval

getExtension("WEBGL_debug_renderer_info")

UNMASKED_VENDOR_WEBGL

UNMASKED_RENDERER_WEBGL

RENDERER

ALIASED_POINT_SIZE_RANGE

ALIASED_LINE_WIDTH_RANGE

MAX_RENDERBUFFER_SIZE

MAX_CUBE_MAP_TEXTURE_SIZE

MAX_COMBINED_TEXTURE_IMAGE_UNITS

MAX_TEXTURE_IMAGE_UNITS

MAX_TEXTURE_SIZE

MAX_VARYING_VECTORS

MAX_VERTEX_ATTRIBS

MAX_VERTEX_TEXTURE_IMAGE_UNITS

MAX_VERTEX_UNIFORM_VECTORS

MAX_VIEWPORT_DIMS

readPixels

getImageData

toDataURL

toBlob

mozGetAsFile

mozFetchAsStream

extractData

fillText

strokeText

Categories Audio Hardware Information Timezone Font

Set of APIs

createOscillator

createanalyzer

createDynamicsCompressor

getChannelData

getFloatFrequencyData

navigator.platform

navigator.hardwareConcurrency

navigator.cpuClass

navigator.maxTouchPoints

navigator.msMaxTouchPoints

navigator.oscpu

window.devicePixelRatio

getTimezoneOffset measureText

offsetWidth

offsetHeight

getBoundingClientRect

getFontData

Table 3. Grouping of JavaScript APIs used for fingerprinting purposes.

Classifier Class Precision Recall Accuracy

SVM
Non-fingerprinter 0.939 0.954

0.939
Fingerprinter 0.937 0.916

RF
Non-fingerprinter 0.931 0.968

0.940
Fingerprinter 0.955 0.903

SVM ∪ RF
Non-fingerprinter 0.958 0.941

0.942
Fingerprinter 0.922 0.944

SVM ∩ RF
Non-fingerprinter 0.914 0.982

0.936
Fingerprinter 0.973 0.875

Table 4. Classification results using SVM and Random Forest

obtained using our ground-truth dataset JSStaticGroundTruth.

script as fingerprinter if at least one of the two classi-

fiers returns a positive match. This choice increases the

recall, but lowers the precision (since we accept some

more false positives). The performance results of this

combination in Table 4 shows that precision on the fin-

gerprinter class decreases a little, but recall gets closer

to 0.95. In the remainder of the paper we use this com-

bination of SVM and RF. We also show what happens

if one favors precision over recall, i.e., SVM ∩ RF. In

this case, the overall accuracy is still high, but as clas-

sification gets more precise at identifying actual finger-

printing scripts, it mis-classifies many of them as non-

fingerprinting. Contrarily, almost all non-fingerprinting

scripts are correctly labeled as such (recall equals 0.982),

but with less precision (0.914).

At last, we describe in Appendix A.2 the experi-

ments we conducted to ensure our classifiers are not

affected by overfitting.

5 Classification using dynamic

code analysis

Static analysis of JavaScript code fails in case of code ob-

fuscation or in case of malformed JavaScript. We quan-

tified the extent of this limitation in Section 4.3. A pos-

sible solution to overcome this limit is using dynamic

code analysis, which is performed by executing the code

under exam and observing its operation, by, e.g., keep-

ing track of instructions being executed. This approach

allows us to understand the actual workflow of a piece of

code, even in case its source code is not available (e.g.,

the program is compiled or its code is obfuscated).

Dynamic code analysis has some significant draw-

backs too. First, code obfuscation prevents manual val-

idation of classification based on dynamic analysis. In-

deed, we cannot verify the classification verdict obtained

with dynamic code analysis when a script is irreversibly

obfuscated, i.e., the code is unreadable and impossible

to understand. Second, it fails with scripts programmed

to prevent the execution of (portions of) code. For in-

stance, some fingerprinting patterns are executed under

specific conditions (e.g., browser in use, visited website,

installed plug-ins, etc). Finally, dynamic code analysis is
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resource consuming because it requires ad hoc analysis

frameworks to keep track of executed APIs and analyze

the execution workflow.

Hence, static and dynamic code analysis show some

pros and cons, and we use them to complement each

other as they lead to different visibility on code struc-

ture and execution. Here we aim to understand how the

two approaches actually compare and complement: we

augment our methodology to process data gathered us-

ing dynamic analysis of JavaScript code, and compare

its performance against the static analysis approach.

5.1 Classifier engineering

We adapt the methodology described in Section 4.4 to

process logs in JSAlexa. For each script, we count at

runtime the occurrences of APIs in Table 3. Once com-

pleted, features reporting the name of the API and num-

ber of its occurrences are used to feed a classifier which

is responsible for distinguishing fingerprinting scripts.

For training and testing our classifier we use the

same steps described in Section 4.4 using ground-

truth JSDynamicGroundTruth. For the sake of simplic-

ity, we use a Random Forest as classification engine.

The resulting Random Forest achieves a 0.952 precision

on the fingerprinting class, which is in line with results

obtained on JSStaticGroundTruth.19

5.2 Comparison

We apply both methodologies on the about 156, 000

scripts contained in JSAlexa. We observe the following

results: First, we observe that classification based on

static code analysis tags 1764 scripts as fingerprinting:

of these, 692 present only slight differences from the oth-

ers, mostly consisting in custom identifiers and settings

used by trackers, resulting in 1072 actually different fin-

gerprinters. As shown in Table 5, only 794 are labeled as

such by dynamic code analysis. Such difference is caused

by the intrinsic differences of these two approaches. In

fact, dynamic analysis can identify fingerprinting pat-

terns only if these have actually been executed by the

browser. However we observe a considerable amount of

fingerprinting scripts which contain latent fingerprint-

ing patterns, i.e., portions of code executed under given

19 We follow the same grid-search-based approach described

in Appendix A.1 to optimize hyperparameters.

conditions (e.g., “browser is Google Chrome”, “cookies

are not enabled”, etc.).20 Only static analysis can cap-

ture these. For these reasons, of the 1072 scripts labeled

as fingerprinters using static analysis, the dynamic one

agrees in 678 of the cases whilst 394 are “missed”, i.e.,

roughly 30% of scripts. Second, of the 794 fingerprinters

detected using dynamic analysis, 116 are “missed” by

static analysis.21 By manually inspecting them, we ob-

serve most of these are deeply obfuscated scripts which

do actually generate logs of fingerprinting patterns at

execution time. These are impossible to examine with

static analysis, which misses then about 15% of scripts.

In summary, the results of this experiment show

that static and dynamic code analysis complement

each other and both approaches must be considered to

achieve a reasonable trade-off between accuracy, devel-

opment costs and resource footprint.

6 Evaluating state of the art

Now we run experiments to gauge how our approach

improves the state of the art. For this, we compare

the performance achieved by our classifiers against the

two most prominent solutions for fingerprinter detec-

tion, FPDetective [7] and Princeton’s heuristics [11].

Considering FPDetective, unfortunately, the open-

source repository hosting its code is no longer main-

tained and the code building the system is obsolete.

Hence, to reproduce the behavior of FPDetective, we

implement the heuristics presented in Section 4.2 of

its paper [7]. Notice that, since it was built back in

2013, FPDetective does not consider many fingerprint-

ing techniques which have been introduced in the recent

years: Canvas, WebGL, Audio fingerprinting. Neverthe-

less, it contemplates now dead Flash technology.

Considering Princeton’s proposal, also in this case

we cannot use the code contained in the repository pro-

vided in [11]. This hosts the code of the web scraper,

OpenWPM, but not the implementation of the heuris-

tics described in the paper. Hence, we can only try to

20 There exist advanced techniques for dynamic analysis whose

aim is to comprehensively examine all execution workflows con-

tained in code. However, such techniques (e.g., concolic testing)

are extremely resource consuming, and hard to automatize and

implement in the browser environment.

21 These numbers are not reflected in Table 5 as the numbers

reported there are computed considering Princeton’s and FPDe-

tective’s approaches too.
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∩ Static Dynamic Princeton FPDetective

Static 1072 - - -

Dynamic 678 794 - -

Princeton 260 307 330 -

FPDetective 115 131 101 199

Exclusive 388 66 23 62

Coverage 88% 65% 27% 16%

Table 5. Fingerprinters found in JSAlexa using static and dy-

namic code analysis, as well as Princeton’s approach [11] and

FPDetective [7]. Each cell reports the number of fingerprinters

detected by both approaches on corresponding row and column.

Each cell in “Exclusive” row reports the number of fingerprinters

detected exclusively by the approach on relative column. Each

cell in “Coverage” row reports the percentage of fingerprinters

detected by the approach on the corrisponding column, computed

over the total number of unique detected fingerprinters (1223).

reproduce the heuristics described in Sections 6.1-6.5

of [11]. Unfortunately, three fingerprinting techniques

described in the paper are not reproducible. In details,

• Audio: The authors simply list the Audio APIs which

they monitored, but they do not provide any actual al-

gorithm to conclude whether a script is performing Au-

dio fingerprinting or not. This lack of information pre-

vents us from implementing this heuristic.

• WebRTC: This heuristic is not meant to be auto-

matic. The paper describes which APIs authors moni-

tored to check WebRTC usage, but the test to under-

stand whether this was used for fingerprinting purposes

(i.e., tracking IP addresses) is performed manually.

• Battery: also in this case the authors do not detail

any algorithm to check when fingerprinting based on

Battery properties is performed. They simply list the

properties to monitor, and claim the fingerprinting pur-

poses are confirmed by the presence of other techniques.

As a result, the only heuristics we can reproduce

entirely are those for detecting Canvas and Canvas Font

fingerprinting. However, we remark that the usage of

Audio, WebRTC and Battery APIs for fingerprinting is

quite infrequent: as we show in Section 7, Audio is used

in about 4% of fingerprinting scripts. According to [11],

WebRTC has been observed in 0.7% of websites in the

top 1M, and Battery is used by just 2 scripts. Hence, we

are confident that the lack of these three techniques in

our implementation of Princeton’s heuristics does not

influence conclusions presented in the following section.

6.1 Comparison

As done in Section 5, we use again JSAlexa to compare

the performance of our classifiers against FPDetective

and Princeton’s heuristics, and report the results in Ta-

ble 5. As shown, FPDetective and Princeton’s heuristics

identify 199 and 330 fingerprinters, respectively. All in

all, focusing on the percentage of fingerprinters detected

by each approach (“Coverage” row), we observe Prince-

ton’s heuristics and FPDetective can spot only 27% and

16% of overall 1223 fingerprinters, respectively.

Checking the fingerprinters identified exclusively by

these approaches, by manual verification we have that

of the 23 scripts labeled as fingerprinters by Princeton’s

heuristics, 2 are true positives, 18 are false positives, and

3 are obfuscated scripts impossible to check. Similarly,

FPDetective labels as fingerprinters 62 scripts which

are not captured by other approaches, but 34 of these

are clear false positives. Of the 25 true positives, many

present very similar content, and they can be collapsed

to just 2 scripts, reducing the FPDetective’s additional

true positives down to 5 scripts. In the end, Prince-

ton’s heuristics and FPDetective together detect 7 new

true positives corresponding to actual false negatives

of our classifiers. For instance, FPDetective concludes

moatad.js22 is fingerprinting as it performs plug-in enu-

meration and checks the status of the battery (possibly

for bot recognition). Similarly, Princeton’s heuristics la-

bel the script tfav_adl_347.js23 as fingerprinting be-

cause it performs font enumeration. In both cases, our

RF model does not achieve the same conclusion.

The results of these old methodologies are rather

poor and expected: First, both do not cover all finger-

printing techniques considered by our classifiers. Sec-

ond, they both build on dynamic code analysis only,

thus, they cannot spot latent fingerprinting APIs.

7 Fingerprinting in the wild

Now we leverage our JSWild dataset to analyze the

adoption of fingerprinting scripts in the web. We

first quantify the actual spread of fingerprinting in

JavaScript files, and analyze which techniques are the

most used in Section 7.1. Then, we study how they

are used in combination in Section 7.2. Finally, in Sec-

22 https://z.moatads.com/martinwilliamssyngenta953159580698/

moatad.js

23 https://j.adlooxtracking.com/ads/js/tfav_adl_347.js

https://z.moatads.com/martinwilliamssyngenta953159580698/moatad.js
https://z.moatads.com/martinwilliamssyngenta953159580698/moatad.js
https://j.adlooxtracking.com/ads/js/tfav_adl_347.js
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Finally, we conclude there is no fingerprinting tech-

nique which is peculiar to a given family of services.

Thus, it is hard to grasp the purpose of fingerprinters

(i.e., tracking or security) based on the list of finger-

printing techniques they implement.

8 Limits

Our tools, methodology and datasets present some lim-

its that we summarize hereafter.

• Limits of Ermes Proxy: As Ermes Proxy cannot

provide us a copy of scripts downloaded by users, we

resort to wget to download scripts later on. This lead

us to miss about 40% of scripts actually encountered by

users (mainly because scripts are no more available, or

their URLs have been truncated for anonymization).

• Spatial, temporal and geographical limits of

HTTPDataset: We could only study fingerprinting

JavaScript files downloaded by a limited number of users

and for a limited amount of time. Hence, while we are

confident that HTTPDataset fairly represents typical

users’ browsing patterns, it only partially represents

the most visited websites. Second, HTTPDataset comes

from a single country, i.e., Italy. Therefore, our findings

might not generalize to other regions, and fingerprint-

ers active in such country might be inactive or behave

differently because of different local regulations.

• Considered APIs: Our methodology builds on a

wide number of fingerprinting APIs. For the sake of

simplicity, it does not contemplate some known, yet

rare to encounter, fingerprinting techniques. Those are

JavaScript Engine recognition, devices’ sensors finger-

printing, WebRTC and Battery.

• Limits of approach to analyze fingerprinting us-

age: Our analysis of fingerprinting usage only contem-

plates scripts labeled as fingerprinters by our classifier

based on static code analysis. Hence, it misses strongly

obfuscated and malformed scripts.

Because of all of the limitations described above, re-

sults in Section 7 represent an underestimation of actual

usage of fingerprinting in the wild.

9 Discussion and conclusions

We explored the possibility of identifying fingerprinting

services by combining static code analysis and machine

learning. For this, we designed, engineered and evalu-

ated a methodology building on these two techniques

and, leveraging a ground-truth dataset including more

than 1, 900 labeled JavaScript files, we demonstrated the

feasibility of this approach, showing that we can achieve

up to 94% accuracy at identifying fingerprinters auto-

matically. Plus, our approach is scalable and easy to

extend to consider other fingerprinting techniques.

We adapted the methodology to build on JavaScript

execution logs obtained by performing dynamic code

analysis. By comparing the two approaches we showed

they complement each other. In fact, dynamic analysis

spots obfuscated fingerprinting code impossible to de-

tect with static analysis, whereas, static analysis finds

fingerprinting patterns the browser executes only under

specific conditions, and, thus, not always detectable by

dynamic analysis. Hence, studies based solely on static

or dynamic code analysis provide an incomplete view of

actual usage of fingerprinting in the web.

By applying our methodology on a dataset of

JavaScript files downloaded by 982 users during their

navigation, we obtained several results. Out of the about

420, 000 scripts contained in the dataset, we identified

more than 4, 500 performing fingerprinting distributed

by 842 different domains. Interestingly, we observed that

only 17% of these domains are known trackers. The un-

known fingerprinters are new trackers not yet included

in popular anti-tracking lists and services which rely

on fingerprinting for security and anti-fraud purposes.

By characterizing fingerprinting techniques those scripts

use, we found that modern and possibly more accurate

approaches based on Canvas and Audio fingerprinting

are the least used, while traditional techniques, such

as those based on enumerations of browser’s plug-ins

and MIME types are 5 times more popular. Finally, the

695 unknown fingerprinters employ the same techniques

used by verified trackers, making it hard to understand

services’ nature based on adopted techniques.

In conclusion, the contributions presented in this

paper demonstrate that our approach to the automatic

identification of fingerprinters is novel, feasible and ac-

curate. Nevertheless, our results show that further inge-

nuity is needed to discriminate services conducting user-

tracking activity leveraging fingerprinting code analysis.

We plan to investigate this aspect in our future work.
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Domain # Users Font WebGL
Hardware

Information Audio Canvas

Plug-ins &

MIME types
Browser

Parameters Screen Timezone

addthis.com 562 (57%) • • • • • • •

bing.com 541 (55%) • • •

hotjar.com 491 (50%) • • • • •

moatads.com 449 (46%) • • • • • • • •

doubleverify.com 327 (33%) • • • • •

siftscience.com 265 (27%) • • • • • •

mathtag.com 252 (26%) • • • • • •

theadex.com 197 (20%) • • • •

hs-analytics.net 182 (19%) • • • •

scorecardresearch.com 144 (15%) • • • •

perfdrive.com 134 (14%) • • • • • •

adtechus.com 132 (13%) • • • • • •

adf.ly 130 (13%) • • • • • • • •

adsrvr.org 118 (12%) • • • •

digitru.st 111 (11%) • • •

ioam.de 108 (11%) • • •

mediaplex.com 104 (11%) • • • • • • • •

kissmetrics.com 94 (10%) • • •

rubiconproject.com 94 (10%) • • • • • • • •

penx.com 90 (9%) • • • • • • • •

coremetrics.com 89 (9%) • • • •

y-track.com 81 (8%) • • • • • •

cdn-net.com 72 (7%) • • • • • • • •

gumgum.com 67 (7%) • • • • • • • •

globalwebindex.net 64 (7%) • • • • •

firstimpression.io 61 (6%) • • • • •

doug1izaerwt3.cloudfront.net 60 (6%) • • •

advertising.com 53 (5%) • • • • • • • •

webtrends.com 48 (5%) • • • • • • • •

yandex.ru 42 (4%) • • • • • • • •

Table 7. The 30 most contacted trackers in JSWild dataset performing fingerprinting.

Domain # Users Font WebGL
Hardware

Information Audio Canvas

Plug-ins &

MIME types
Browser

Parameters Screen Timezone

cedsdigital.itwebtrekk 346 (35%) • • • •

paypal.com 284 (29%) • • • • • •

mediaset.netwebtrekk 232 (24%) • • • •

alicdn.com 221 (23%) • • • • • •

repstatic.itwebtrekk 173 (18%) • • • •

stbm.itwebtrekk 157 (16%) • • • •

stgy.ovh 155 (16%) • • • • • •

grouponcdn.com 151 (15%) • • • • • • • •

ilfattoquotidiano.itwebtrekk 148 (15%) • • • •

github.com 144 (15%) • • • • • •

ansa.itwebtrekk 132 (13%) • • • • •

yotpo.com 130 (13%) • • • • • •

youmath.it 126 (13%) • • • •

poste.it 114 (12%) • • • • • • • •

areyouahuman.com 113 (12%) • • • • • • • •

cloudflare.com 103 (10%) • • • • • • • •

ilgiornale.it 100 (10%) • • • •

plug.itwebtrekk 99 (10%) • • • • •

tiscali.itwebtrekk 98 (10%) • • • •

jsdelivr.net 92 (9%) • • • • • • • •

wired.itwebtrekk 90 (9%) • • • •

tiqcdn.com 90 (9%) • • • • • • •

libero.it 89 (9%) • • • • • •

editmysite.com 89 (9%) • • • • •

24o.it 87 (9%) • • •

yimg.com 83 (8%) • • • • • • • •

mymovies.itwebtrekk 70 (7%) • • • •

skuola.netwebtrekk 68 (7%) • • • •

lastampa.itwebtrekk 65 (7%) • • • •

flixbus.de 65 (7%) • • •

Table 8. The 30 most contacted domains in JSWild dataset performing fingerprinting, but not present in TrackerList.24
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